CSCI 104

Rafael Ferreira da Silva

rafsilva@isi.edu

Slides adapted from: Mark Redekopp and David Kempe



USC Viterbi 2

School of Engineering

Vrsrs vesil
P4 1w

2 ol |
v

https://xkcd.com/835/



Self-balancing tree proposed by Adelson-Velsky and Landis

AVL TREES



R, IS(Viterbi -

AVL Trees

* A binary search tree where the height difference between left and right subtrees
of a node is at most 1

— Binary Search Tree (BST): Left subtree keys are less than the root and right subtree keys
are greater

 Two implementations:
— Height: Just store the height of the tree rooted at that node

— Balance: Define b(n) as the balance of a node = (Right — Left) Subtree Height
* Legal valuesare-1,0,1
* Balances require at most 2-bits if we are trying to save memory.
* Let's use balance for this lecture.

@ Balance
w factors

AVL Tree storing Heights AVL Tree storing balances



Adding a New Node

* Once a new node is added, can its parent be out of
balance?
— No, assuming the tree is "in-balance"” when we start.

— Thus, our parent has to have
* A balance of 0
* A balance of 1 if we are a new left child or -1 if a new right child

— Otherwise it would not be our parent or the parent would
have been out of balance already

(012 (112 )
010 010 @




Losing Balance

* If our parent is not out of balance, is it possible our
grandparent is out of balance?

e Sure, so we need a way to re-balance it




USC Viterbi (2

School of Engineering

To Zig or Zag

The rotation(s) required to
balance a tree is/are
dependent on the
grandparent, parent, child
relationships

We can refer to these as Left-left or Right-right

L - (a.k.a. Zig-zig)
the zig-zig case and zig-zag [One left/right rotation of g]
case

Left-right or Right-left
(a.k.a. Zig-zag)
[Rotate p then g]

Zig-zig requires 1 rotation
Zig-zag requires 2
rotations (first converts to
zZig-zig)

(20




- USCViterbi '
Disclaimer

* There are many ways to structure an
implementation of an AVL tree...the following
slides represent just 1
— Focus on the bigger picture ideas as that will allow

you to more easily understand other
implementations



Insert(n)

* If empty tree => set as root, b(n) =0, done!

* Insert n (by walking the tree to a leaf, p, and
inserting the new node as its child), set

balance to O, and look at its parent, p 1)
— If b(p) = -1, then b(p) = 0. Done! @ 0
— If b(p) = +1, then b(p) = 0. Done! @

— If b(p) = 0, then update b(p) and call insert-fix(p, n) e

(20
(12

010



- USCViterbi '
Insert-fix(p, n)

* Precondition: p and n are balanced: {+1,0,-1}

e Postcondition: g, p, and n are balanced: {+1,0,-1}

e If pisnull or parent(p) is null, return

* Let g =parent(p)

* Assume p is left child of g [For right child swap left/right, +/-]

— g.balance +=-1
— if g.balance == 0, return
— if g.balance == -1, insertFix(g, p)

— If g.balance ==-2 Note: If you
» If zig-zig then rotateRight(g); p.balance =g.balance =0 perform a
* If zig-zag then rotatelLeft(p); rotateRight(g); rotation, you will
NOT need to

— if n.balance == -1 then p.balance = 0; g.balance(+1); n.balance = 0;
— if n.balance == 0 then p.balance = 0; g.balance(0); n.balance = 0; recurse. You are
— if n.balance == +1 then p.balance = -1; g.balance(0); n.balance = 0; done!




School of Engineering

Insertion
* |[nsert 10, 20, 30, 15, 25, 12,5, 3,8

Empty Insert 10 Insert 20 Insert 30 Zig-zig =>

10 violates balance b(g) = b(p) =0
€20

Insert 15 Insert 25 Insert 12 Zig-zag & b(n) =0 =>

TYED
b(g) = b(p) = b(n) =0
20, C20)

(10)030) G0y G30
@15 @1s) (25




School of Engineering

Insertion
* |[nsert 10, 20, 30, 15, 25, 12,5, 3,8

Zig-zig =>
b(g) = b(p) =0

Zig-zag & b(n) = -1 =>
b(g) =1 & b(p) =b(n) =0




School of Engineering

Insertion Exercise 1
* [nsert key=28

(20
Gro) 30

(05 ) (12) @25
EPDITPILY



School of Engineering

Insertion Exercise 2
* |Insert key=17

(20
Gro) 30

(05 ) (12) @25
EPDITPILY



School of Engineering

Insertion Exercise 3
* |nsert key=2

(20
Gro) 30

(05 ) (12) @25
EPDITPILY



Remove Operation

* Remove operations may also require
rebalancing via rotations

* The key idea is to update the balance of the
nodes on the ancestor pathway

* |f an ancestor gets out of balance then
perform rotations to rebalance

— Unlike insert, performing rotations does not mean
you are done, but need to continue

* There are slightly more cases to worry about
but not too many more



Remove

* Let n=node to remove (perform BST find) and p = parent(n)

* If n has 2 children, swap positions with in-order successor and
perform the next step
— Now n has 0 or 1 child guaranteed
* Ifnisnotin the root position determine its relationship with
its parent
— If nis a left child, let diff = +1
— if nis a right child, let diff =-1
* Delete n and update tree, including the root if necessary

* removeFix(p, diff);



- USCthrbi '
RemoveFix(n, diff)

 Ifnisnull, return
 Let ndiff =+1if nis a left child and -1 otherwise
 Let p =parent(n). Use this value of p when you recurse.

* If balance of n would be -2 (i.e. balance(n) + diff == -2)
— [Perform the check for the mirror case where balance(n) + diff == +2, flipping left/right and -1/+1]
— Let c = left(n), the taller of the children
— If balance(c) ==-10or 0 (zig-zig case)
* rotateRight(n)
* if balance(c) == -1 then balance(n) = balance(c) = 0, removeFix(p, ndiff)
* if balance(c) == 0 then balance(n) = -1, balance(c) = +1, done!
— else if balance(c) == 1 (zig-zag case)
rotateLeft(c) then rotateRight(n)
Let g = right(c)
If balance(g) == +1 then balance(n) = 0, balance(c) = -1, balance(g) =0
If balance(g) == 0 then balance(n) = balance(c) = 0, balance(g) =0
If balance(g) == -1 then balance(n) = +1, balance(c) = 0, balance(g) =0
removeFix(parent(p), ndiff);

* elseif balance(n) == 0 then balance(n) += diff, done!

* else balance(n) = 0, removeFix(p, ndiff)



Remove 15

Remove Examples

D D
DEROM IR
) @) () 6 @
ol ey
Remove 3 @
DR
(5 @) @

ooooooooooooooooooo



Remove 25

ooooooooooooooooooo

Remove Examples

Zig-zig & b(c) = -1 =>




USCViterbi @

School of Eng

Remove Examples

Remove 20

Zig-zag & b(g) = -1 =>
b(n) =+1, b(c) =0, b(g) =0




Remove Example 1

Remove 8

) 5@ @
G e o) (an>
e

ooooooooooooooooooo



School of Engineering

Remove Example 1

Zig-zag & b(1) =0 =>
b(n)=-1,b(c)=0



Remove Example 2

Remove 10

oD
DD
(3 ) G15)(25) (135>
DG @
G

ooooooooooooooooooo






USC Viterbi

ooooooooooooooooooo

Remove Example 3

Remove 30

o{ @



USC Viterbi (2

School of Engineering

Remove Example 3

else if b(c) == 1 (zig-zag case)
 rotateLeft(c) then rotateRight(n)
* Letg=right(c),b(g)=0
Remove 30 * Ifb(g) == +1then b(n) = 0, b(c) = -1, b(g) = 0
* Ifb(g)==0thenb(n)=b(c)=0,b(g)=0
* Ifb(g) ==-1then b(n) =+1,b(c)=0,b(g)=0
* removeFix(parent(p), ndiff);




USCViterbi =
Remove Example 3 (cont)

else if b(c) = (zig-zag case)
rotateLeft(c) then rotateR|ght(n)
» Let g =right(c), b(g) =
Remove 30 (cont.) * Ifb(g) == +1 then b(n) =0,b(c)=-1,b(g) =0
* Ifb(g) == 0 then b(n) = b(c) =0, b(g) =
« Ifb(g) ==-1thenb(n) =+1,b(c) =0, b(g)=0

n @ * removeFix(parent(p), ndiff);



Online Tool

* https://www.cs.usfca.edu/~galles/visualization/AVLtree.html




Distribute these 4 to students

FOR PRINT



Insert(n)

* If empty tree => set as root, b(n) =0, done!

* Insert n (by walking the tree to a leaf, p, and
inserting the new node as its child), set

balance to O, and look at its parent, p 1)
— If b(p) = -1, then b(p) = 0. Done! @ 0
— If b(p) = +1, then b(p) = 0. Done! @

— If b(p) = 0, then update b(p) and call insert-fix(p, n) e

(20
(12

010



- USCWt?rbi @
Insert-fix(p, n)

* Precondition: p and n are balanced: {-1,0,-1}

* Postcondition: g, p, and n are balanced: {-1,0,-1}

e If pisnull or parent(p) is null, return

* Let g =parent(p)

* Assume p is left child of g [For right child swap left/right, +/-]

— g.balance +=-1
— if g.balance == 0, return
— if g.balance == -1, insertFix(g, p)

— If g.balance ==-2 Note: If you
» If zig-zig then rotateRight(g); p.balance =g.balance =0 perform a
* If zig-zag then rotatelLeft(p); rotateRight(g); rotation, you will
NOT need to

— if n.balance == -1 then p.balance = 0; g.balance(+1); n.balance = 0;
— if n.balance == 0 then p.balance = 0; g.balance(0); n.balance = 0; recurse. You are
— if n.balance == +1 then p.balance = -1; g.balance(0); n.balance = 0; done!




Remove

* Let n=node to remove (perform BST find) and p = parent(n)

* If n has 2 children, swap positions with in-order successor and
perform the next step
— Now n has 0 or 1 child guaranteed
* Ifnisnotin the root position determine its relationship with
its parent
— If nis a left child, let diff = +1
— if nis a right child, let diff =-1
* Delete n and update tree, including the root if necessary

* removeFix(p, diff);



- USCthrbi '
RemoveFix(n, diff)

 Ifnisnull, return
 Let ndiff =+1if nis a left child and -1 otherwise
 Let p =parent(n). Use this value of p when you recurse.

* If balance of n would be -2 (i.e. balance(n) + diff == -2)
— [Perform the check for the mirror case where balance(n) + diff == +2, flipping left/right and -1/+1]
— Let c = left(n), the taller of the children
— If balance(c) ==-10or 0 (zig-zig case)
* rotateRight(n)
* if balance(c) == -1 then balance(n) = balance(c) = 0, removeFix(p, ndiff)
* if balance(c) == 0 then balance(n) = -1, balance(c) = +1, done!
— else if balance(c) == 1 (zig-zag case)
rotateLeft(c) then rotateRight(n)
Let g = right(c)
If balance(g) == +1 then balance(n) = 0, balance(c) = -1, balance(g) =0
If balance(g) == 0 then balance(n) = balance(c) = 0, balance(g) =0
If balance(g) == -1 then balance(n) = +1, balance(c) = 0, balance(g) =0
removeFix(parent(p), ndiff);

* elseif balance(n) == 0 then balance(n) += diff, done!

* else balance(n) = 0, removeFix(p, ndiff)



School of Engineering

OLD ALTERNATE METHOD



Insert

e Root => set balance, done!

* Insert, v, and look at its parent, p
— If b(p) = -1, then b(p) = 0. Done!
— If b(p) = +1, then b(p) = 0. Done!
— If b(p) = 0, then update b(p) and call insert-fix(p)



Insert-Fix

* Forinput node, v
— If vis root, done.
— Invariant: b(v) ={-1, +1}
* Find p = parent(v) and assume v = left(p) [i.e. left child]
— If b(p) =1, then b(p) = 0. Done!
— If b(p) =0, then b(p) = -1. Insert-fix(p).
— If b(p) =-1 and b(v) = -1 (zig-zig), then b(p) = 0, b(v) = 0, rightRotate(p)
Done!
— If b(p) =-1 and b(v) = 1 (zig-zag), then
* u=right(v), b(u) =0, leftRotate(n), rightRotate(p)
* Ifb(u)=-1, thenb(v)=0, b(p)=1

* Ifb(u)=1,thenb(v)=-1,b(p)=0
* Done!



