
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

HASH	TABLES

3

Dictionaries/Maps
• An	array	maps	integers to	values

– Given	i,	array[i]	returns	the	value	in	O(1)

• Dictionaries	map	keys to	values	
– Given	key,	k,	map[k]	returns	the	associated	

value
– Key	can	be	anything	provided…

• It	has	a	'<'	operator	defined	for	it	(C++	map)	
or	some	other	comparator	functor

• Most	languages	implementation	of	a	
dictionary	implementation	require	something	
similar	to	operator<	for	key	types

"Tommy" 2.5

"Jill" 3.45

map<string, double>

Pair<string,double>

3.2 2.7 3.452.91 3.8

0 1 2 3 4
4.0

5

C++ maps allow any type to
be the key

Arrays associate an integer with
some arbitrary type as the value
(i.e. the key is always an integer)

2

3.45

"Jill"

3.45

4

Dictionary	Implementation

• A	dictionary/map	can	be	implemented	with	a	
balanced	BST
– Insert,	Find,	Remove	=	O(______________)

"Jordan" Student
object

key value

"Frank" Student
object

"Percy" Student
object

"Anne" Student
object

"Greg" Student
object

"Tommy" Student
object

Map::find("Greg") Map::find("Mark")

5

Dictionary	Implementation
• A	dictionary/map	can	be	implemented	with	a	balanced	BST

– Insert,	Find,	Remove	=	O(log2n)

• Can	we	do	better?
– Hash	tables	(unordered	maps)	offer	the	promise	of	O(1)	access	time

"Jordan" Student
object

key value

"Frank" Student
object

"Percy" Student
object

"Anne" Student
object

"Greg" Student
object

"Tommy" Student
object

Map::find("Greg") Map::find("Mark")

6

Hash	Tables
• Can	we	use	non-integer	keys	but	

still	use	an	array?
• What	if	we	just	convert	the	non-

integer	key	to	an	integer.
– For	now,	make	the	unrealistic	

assumption	that	each	unique	key	
converts	to	a	unique	integer

• This	is	the	idea	behind	a	hash	table
• The	conversion	function	is	known	

as	a	hash	function,	h(k)
– It	should	be	fast/easy	to	compute	(i.e.	

O(1))

Bo
3.2

Tom
2.7

Jill
3.45

Joe
2.91

Tim
3.8

0 1 2 3 4
Lee
4.0

5

3.45

"Jill"

Conversion
function

2

7

Hash	Tables
• A	hash	table	is	an	array	that	stores	key,value

pairs
– Usually	smaller	than	the	size	of	possible	set	

of	keys,	|S|
• USC	ID's	=	1010 options
• Pick	a	hash	table	of	some	size	much	smaller	

(how	many	students	do	we	have	at	any	
particular	time)

• The	table	is	coupled	with	a	function,	h(k),	
that	maps	keys	to	an	integer	in	the	range	
[0..tableSize-1]	(i.e.	[0	to	m-1])

• What	are	the	considerations…
– How	big	should	the	table	be?
– How	to	select	a	hash	function?
– What	if	two	keys	map	to	the	same	array	

location?	(i.e.	h(k1)	==	h(k2))
• Known	as	a	collision

0
1
2
3
4

tableSize-2
tableSize-1

…

key, value

key h(k)

Define
m = tableSize

n = # of used entries

8

Hash	Functions	First	Look
• Define	N =	#	of	entries	stored,	M =	Table/Array	Size
• A	hash	function	must	be	able	to	

– convert	the	key	data	type	to	an	integer
– That	integer	must	be	in	the	range	[0	to	M-1]	

• Keeping	h(k)	in	the	range	of	the	tableSize (M)
• Fairly	easy	method:		Use	modulo	arithmetic	(i.e.	h(k)	%	M)

• Usually	converting	key	data	type	to	an	integer	is	a	user-provided	
function	
– Akin	to	the	operator<()	needed	to	use	a	data	type	as	a	key	for	the	C++	map

• Example:	Strings
– Use	ASCII	codes	for	each	character	and	add	them	or	group	them
– "hello"	=>	'h'	=	104,	'e'=101,	'l'	=	108,	'l'	=	108,	'o'	=	111	=
– Example	function:	h("hello")	=	104	+	101	+	108	+	108	+	111	=	532	%	M

9

Hash	Function	Desirables
• A	"perfect	hash	function"	should	map	each	given	key	
to	a	unique	location	in	the	table
– Perfect	hash	functions	are	not	practically	attainable

• A	"good"	hash	function
– Is	easy	and	fast	to	compute
– Scatters	data	uniformly	throughout	the	hash	table

• P(h(k)	=	x)	=	1/M

10

Table	Size
• Ideally…

– Enough	entries	for	all	possible	keys
– Example:		3-letter	airport	codes:	LAX,	BUR,	JFK	would	require	how	many	

table	entries?
• 263 =	17576
• Not	all	3-letter	codes	correspond	to	airports

– May	be	impractical	as	we	will	often	only	use	a	(small)	subset	of	keys	in	a	
real	application

• Realistically…
– The	table	size	should	be	bigger		than	the	amount	of	expected	entries

• Don't	pick	a	table	size	that	is	smaller	than	your	expected	number	of	entries
– But	anything	smaller	than	the	size	of	all	possible	keys	admits	the	chance	

that	two	keys	map	to	the	same	location	in	the	table	(a.k.a.		COLLISION)
– You	will	see	that	tableSize should	usually	be	a	prime	number

11

Resolving	Collisions
• Example:

– A	hash	table	where	keys	are	phone	numbers:	(XXX)	YYY-ZZZZ
– Obviously	we	can't	have	a	table	with1010	entries
– Should	we	define	h(k)	as	the	upper	3	or	4	digits:		XXX	or	XXXY

• Meaning	a	table	of	1000	or	10,000	entries
– Define	h(k)	as	the	lowest	4-digits	of	the	phone	number:	ZZZZ

• Meaning	a	table	with	10,000	entries:	0000-9999
– Now	213-740-4321	and	323-681-4321	both	map	to	location	4321	in	the	

table

• Collisions	are	hard	to	avoid	so	we	have	to	find	a	way	to	deal	with	
them

• Methods
– Open	addressing	(probing)

• Linear,	quadratic,	double-hashing
– Buckets/Chaining	(Closed	Addressing)

12

Open	Addressing
• Open	addressing	means	an	item	

with	key,	k,	may	not	be	located	at	
h(k)

• Assume,	location	2	is	occupied	with	
another	item

• If	a	new	item	hashes	to	location	2,	
we	need	to	find	another	location	to	
store	it

• Linear	Probing
– Just	move	on	to	location	h(k)+1,	

h(k)+2,	h(k)+3,…

• Quadratic	Probing
– Check	location	h(k)+12,	h(k)+22,	

h(k)+32,	…

k, v0
1

k, v2
k, v3

4

tableSize-2
k,vtableSize-1

…

key, value
key

h(k)

13

Linear	Probing	Issues
• If	certain	data	patterns	lead	
to	many	collisions,	linear	
probing	leads	to	clusters	of	
occupied	areas	in	the	table	
called	primary	clustering

• How	would	quadratic	
probing	help	fight	primary	
clustering?
– Quadratic	probing	tends	to	
spread	out	data	across	the	
table	by	taking	larger	and	
larger	steps	until	it	finds	an	
empty	location

occupied0
1

occupied2
occupied3

4

tableSize-2
occupiedtableSize-1

…

key, value

Linear
Probing

occupied0
1

occupied2
occupied3

4

6
occupied7

key, value

Quadratic
Probing

5

14

Find	&	Removal	Considerations
• Given	linear	or	quadratic	clustering	

how	would	you	find	a	given	key,	
value	pair
– First	hash	it
– If	it	is	not	at	h(k),	then	move	on	to	the	

next	items	in	the	linear	or	quadratic	
sequence	of	locations	until	

• you	find	it	or	
• an	empty	location	or
• search	the	whole	table

• What	if	items	get	removed
– Now	the	find	algorithm	might	terminate	

too	early
– Mark	a	location	as	

"removed"=unoccupied	but	part	of	a	
cluster

occupied0
1

occupied2
occupied3

4

tableSize-2
occupiedtableSize-1

…

key, value

Linear
Probing

occupied0
1

occupied2
occupied3

4

6
occupied7

key, value

Quadratic
Probing

5

15

Practice
• Use	the	hash	function	h(k)=k%10	to	find	the	contents	of	a	

hash	table	(m=10)	after	inserting	keys	1,	11,	2,	21,	12,	31,	41	
using	linear	probing

• Use	the	hash	function	h(k)=k%9	to	find	the	contents	of	a	hash	
table	(m=9)	after	inserting	keys	36,	27,	18,	9,	0	using	quadratic	
probing

0 1 2 3 4 5 6 7 8 9

1 11 2 21 12 31 41

0 1 2 3 4 5 6 7 8

36 27 18 9 0

16

Double	Hashing
• Define	h1(k)	to	map	keys	to	a	table	location
• But	also	define	h2(k)	to	produce	a	linear	probing	step	size

– First	look	at	h1(k)
– Then	if	it	is	occupied,	look	at	h1(k)	+	h2(k)
– Then	if	it	is	occupied,	look	at	h1(k)	+	2*h2(k)
– Then	if	it	is	occupied,	look	at	h1(k)	+	3*h2(k)

• TableSize=13,	h1(k)	=	k	mod	13,	and	h2(k)	=	5	– (k	mod	5)
• What	sequence	would	I	probe	if	k	=	31

– h1(31)	=	5,	h2(31)	=	5-(31	mod	5)	=	4
– 5,	9,	0,	4,	8,	12,	3,	7,	11,	2,	6,	10,	1	

17

Buckets/Chaining
• Rather	than	searching	for	a	

free	entry,	make	each	entry	in	
the	table	an	ARRAY	(bucket)	or	
LINKED	LIST	(chain)	of	
items/entries

• Buckets
– How	big	should	you	make	each	

array?		
– Too	much	wasted	space

• Chaining
– Each	entry	is	a	linked	List

Bucket 0
1
2
3
4

tableSize-1

k,v

0
1
2
3
4

tableSize-1
…

key, value

…
…
…
…
…
…
…

Array of Linked
Lists

18

Hash	Tables

• Suboperations
– Compute	h(k)	should	be	O(1)
– Array	access	of	table[h(k)]	=	O(1)

• In	a	hash	table,	what	is	the	expected	efficiency	
of	each	operation
– Find	=	O(1)
– Insert	=	O(1)
– Remove	=	O(1)

19

Hashing	Efficiency
• Loading	factor,	α,	defined	as:		

– (N=number	of	items	in	the	table)	/	M=tableSize =>	α =	N	/	M
– Really	it	is	just	the	%	of	locations	currently	occupied	

• For	chaining,	α,	can	be	greater	than	1
– α =	(number	of	items	in	the	table)	/	tableSize
– (number	of	items	in	the	table)	can	be	greater	than	tableSize

• What	is	the	average	length	of	a	chain	in	the	table?	α
– 10	total	items	in	a	hashTable of	size	5	=>	expected	chain	=	2

• #	of	operations	to	search
– Unsuccessful	search:	1	+	α
– Successful	search:		1	+	α/2

20

Rehashing	for	Open	Addressing
• For	open	addressing/probing	time	also	depends	on	α
• As	α approaches	1,	expected	comparisons	will	get	very	large	

– Capped	at	the	tableSize (i.e.	O(n))

• Using	a	dynamic	array	(vector)	we	can	simply	allocate	a	bigger	
table
– Don't	just	double	it	because	we	want	the	tableSize to	be	prime

• Can	we	just	copy	items	over	to	the	corresponding	location	in	
the	new	table?	
– No	because	the	hash	function	usually	depends	on	tableSize so	we	

need	to	re-hash	each	entry	to	its	correct	location
– h(k)	=	k	%	13				!=			h'(k)	=	k	%17			(e.g.	k	=	15)

• General	guideline	is	to	keep	α <	1/2)

21

Unordered	Maps
• A	hash	table	implements	a	map	ADT

– Add(key,value)
– Remove(key)
– Lookup/Find(key)	

• Returns	value

• Given	a	key,	the	hash	function	is	interested	in	
producing	unique,	evenly	spread	integers,	NOT	
maintaining	ordering	of	the	keys

– That	is,	just	because	k1	<	k2,	doesn't	mean	h(k1)	<	
h(k2)

– Thus	the	table	holds	values	in	arbitrary	order	
unlike	the	BST

– If	you	iterate	through	a	hash	table	(and	sometimes	
that	is	even	a	challenge),	you	likely	won't	see	
key,value pairs	in	order

• A	hash	table	implements	an	
UNORDERED	MAP

• A	Binary	Search	Tree	implements	an	ORDERED	
MAP

Bo
3.2

Tom
2.7

Jill
3.45

Joe
2.91

Tim
3.8

0 1 2 3 4
Lee
4.0

5

3.45

"Jill"

Conversion
function

2

22

C++11	Implementation

• C++11	added	new	container	classes:
– unordered_map
– unordered_set

• Each	uses	a	hash	table	for	average	complexity	
to	insert	,	erase,	and	find	in	O(1)

23

HASH	FUNCTIONS

24

Pigeon	Hole	Principle
• Recall	for	hash	tables	we	let…

– n =	#	of	entries	(i.e.	keys)
– m =	size	of	the	hash	table

• If	n >	m,	is	every	entry	in	the	table	used?
– No.	Some	may	be	blank?

• Is	it	possible	we	haven't	had	a	collision?
– No.	Some	entries	have	hashed	to	the	same	location
– Pigeon	Hole	Principle	says	given	n items	to	be	slotted	into	m	holes	and	

n >	m there	is	at	least	one	hole	with	more	than	1	item
– So	if	n >	m,	we	know	we've	had	a	collision

• We	can	only	avoid	a	collision	when	n <	m

25

How	Soon	Would	Collisions	Occur

• Even	if	n <	m,	how	soon	would	we	expect	collisions	
to	occur?

• If	we	had	an	adversary…
– Then	maybe	after	the	first	two	insertions
– The	adversary	would	choose	2	keys	that	mapped	to	the	
same	place

• If	we	had	a	random	assortment	of	keys…
• Birthday	paradox

– Given	n random	values	chosen	from	a	range	of	size	m,	we	
would	expect	a	duplicate	random	value	in	O(m1/2)	trials

• For	actual	birthdays	where	m =	365,	we	expect	a	duplicate	within	
the	first	23	trials

26

Hash	Functions
• A	"perfect	hash	function"	should	map	each	given	key	to	a	

unique	location	in	the	table
– Perfect	hash	functions	are	not	practically	attainable

• A	"good"	hash	function
– Is	easy	and	fast	to	compute
– Scatters	data	evenly	throughout	the	hash	table
– Scatters	random keys	uniformly

• M=3,	keys=[0..4],	h(k)	=	k	%	M does	not	spread	data	randomly		
– Scatters	clustered keys	uniformly

• Rules	of	thumb
– The	hash	function	should	examine	the	entire	search	key,	not	just	a	few	

digits	or	a	portion	of	the	key
– If	modulo	hashing	is	used,	the	base	should	be	prime

27

Modulo	Arithmetic
• Simple	hash	function	is	h(k)	=	k	mod	m

– If	our	data	is	not	already	an	integer,	convert	it	to	an	integer	first

• Recall	m should	be	_____________
– PRIME!!!

• Say	we	didn't	pick	a	prime	number	but	some	power	of	10	(i.e.	
k	mod	10d)	or	power	of	2	(i.e.	2d)…then	any	clustering	in	the	
lower	order	digits	would	cause	collisions
– Suppose	h(k)	=	k	mod	100
– Suppose	we	hash	your	birth	years
– We'd	have	a	lot	of	collisions	around	_____

• Similarly	in	binary	h(k)	=	k	mod	2d can	easily	be	computed	by	
taking	the	lower	d-bits	of	the	number
– 17	dec. =>	10001	bin.	and	thus		17	mod	22	=	01	bin.

28

Relatively	Prime	Numbers

• Two	numbers	are	relatively	prime	if	they	do	not	
share	any	factors	other	than	1

• If	a	and	b	(e.g.	9	and	7)	are	relatively	prime,	then	
their	first	common	multiple	is?
– a*b

• If	m (i.e.	tableSize)	is	a	prime	number	(not	2	or	5)	
what	is	the	first	common	multiple	of	10d and	m?
– m*10d

– For	m =	11	and	d=2,	common	multiples	would	be	1100,	
2200,	3300,	etc.

29

Why	Prime	Table	Size
• Let's	suppose	we	have	clustered	data	when	we	chose	
m=10d
– Assume	we	have	a	set	of	keys,	S	=	{k,	k',	k"…}	(i.e.	99,	199,	
299,	2099,	etc.)	that	all	have	the	same	value	mod	10d	 and	
thus	the	original	clustering	(i.e.	all	mapped	to	same	place	
when	m=10d

• Say	we	now	switch	and	choose	m	to	be	a	prime
number	(m=p)

• What	is	the	chance	these	numbers	hash	to	the	same	
location	(i.e.	still	cluster)	if	we	now	use	
h(k)	=	(k	mod	m)			[where	m	is	prime]?

30

Why	Prime	Table	Size
• Notice	if	these	numbers	map	to	the	same	location	when	tableSize was	m=10d

then	we	know:
– k	mod	10d =	k'	mod	10d =	r	(i.e the	same	remainder	for	both)

• What	can	we	say	about	the	difference	between	any	two	keys	that	map	to	the	
same	location?		(e.g.	k'-k)
– They	differ	by	some	multiple	of	m=10d (i.e.	the	table	size)

• 2099-99	=	2000	=	20*102,			2099-199	=	1900	=	19*10d,			199-99	=	100	=	1*102

– To	repeat:		if	k	and	k'	collide,	k'-k	will	yield	some	multiple	of	10d

• Proof:		Recall	two	numbers,	(k	and	k')	will	hash	to	the	same	location	if
– k	mod	m	=	k'	mod	m	=	r	(i.e the	same	remainder	for	both)
– If	that's	true	then	we	can	write:

k	=	qm +	r				and					k'	=	q'm +	r					for	some	q	and	q'	where	q	≠	q'
– And	thus	k'-k	=	(q'-q)*m….the	difference	is	some	multiple	of	m
– So	for	all	these	numbers	k'-k	yielded	some	multiple	of	10d	

• Put	another	way	the	stepsize =	10d

31

Modulo	Hashing
• So	to	map	to	the	same	place	in	the	m=10d hash	table,	k-k'	would	have	to	be	a	

multiple	of	10d

• BUT…if	k	and	k'	were	to	map	to	the	same	place	using	our	new	tableSize (m=some	
prime	number,	p)		then	k-k'	(which	we	know	is	a	power	of	10d	because	they	
collided	when	m	=	10d)	would	ALSO	have	to	be	divisible	by	p
– So	k-k'	would	have	to	be	a	multiple	of	10d and	p
– Recall	what	would	the	first	common	multiple	of	p	and	10d be?

• So	for	k	and	k'	to	map	to	the	same	place	k-k'	would	have	to	be	some	multiple	
p*10d

– i.e.	1*p*10d,			2*p*10d,				3*p*10d,	…
– For	p	=	11	and	d=2		=>	k-k'	would	have	to	be	1100,	2200,	3300,	etc.

• Ex.	k	=	1199	and	k'=99	would	map	to	the	same	place	mod	11	and	mod	102	

• Ex.	k	=	2299	and	k'=99	would	also	map	to	the	same	place	in	both	tables

32

Here's	the	Point
• Here's	the	point…

– For	the	values	that	used	to	ALL	map	to	the	same	place	like	99,	199,	
299,	399…

– Now,	only	every	m-th one	maps	to	the	same	place	(99,	1199,	2299,	
etc.)

– This	means	the	chance	of	clustered	data	mapping	to	the	same	location	
when	m	is	prime	is	1/m

– In	fact	99,	199,	299,	399,	etc.	map	to	different	locations	mod	11

• So	by	using	a	prime	tableSize (m)	and	modulo	hashing	even	
clustered	data	in	some	other	base	is	spread	across	the	range	
of	the	table
– Recall	a	good	hashing	function	scatters	even	clustered	data	uniformly
– Each	k	has	a	probability	1/m	of	hashing	to	a	location

33

Another	Alternative
• We	just	said	a	"good"	hashing	function	provides	a	uniform	

probability	distribution	of	hashing	to	any	location	
• So	given	a	key,	k,	can	you	think	of	another	hash	function,	h(k)	

such	that	k	has	a	uniform	probability	of	ending	up	in	any	
location?

• How	about	h(k)	=	rand()	%	m
• Pros:

– Fast
– Even	clustered	keys	get	spread	randomly	over	the	hash	table

• Cons:
– How	do	you	do	a	look	up?	
– h(k)	is	not	dependent	on	k…it	is	just	based	on	the	next	random	number

http://www.cs.cmu.edu/~avrim/451f11/lectures/lect1004.pdf

34

Universal	Hash	Functions
• One	alternative	to	the	above	is	not	to	make	the	hash-function	random	but	to	

make	the	selection of	the	hash	function	random
• Anytime	we	fix	on	one	hash	function,	an	adversary	can	easily	create	keys	that	

map	to	the	same	place
– I.e.	they	could	study	the	function	and	try	to	come	up	with	a	"bad"	sequence

• Instead,	suppose…
– We	have	a	family	of	"good"	hash	functions	(h1,	h2,	h3…)	where	each	hash	function	is	

independent	of	the	others	and	has	the	probability	of	mapping	two	keys	to	the	same	
place	=	1/m

– Certainly	an	adversary	could	design	a	"bad"	sequence	of	keys	for	each	of	these	
"good"	hash	functions.

– But	now,	when	we	want	to	create	a	hash	table	we	simply	randomly	select	which	hash	
function	to	use	at	run-time

– The	adversary	wouldn't	know	which	one	we	picked	and	thus	couldn't	know	which	of	
his	bad	sequences	to	feed	us…

– We've	essentially	made	the	odds	of	a	"bad"	sequence	improbable
– And	wasn't	that	the	intention	of	a	hash	function	anyway?
– These	families	of	hash	functions	are	known	as	universal	hash	functions

35

Taking	a	Step	Back
• How	can	any	deterministic	hash	function	appear	to	spread	

items	randomly	over	the	hash	table?
• The	pigeon-hole	principle	says	that	given	N	items	for	M	slots	

where	N>M,	at	least	one	hole	will	have	N/M	items
– 1000	items	for	100	slots…one	slot	is	guaranteed	to	have	10	or	more

• In	reality	the	POSSIBLE	values	of	N	>>	M
– E.g.	Possible	universe	of	USC	ID's	(1010 options)	mapping	to	a	table	on	

the	order	of	100,000
– At	least	1010/105 could	map	to	the	same	place	no	matter	how	"good"	

your	hash	function…it's	deterministic
– What	if	an	adversary	fed	those	in	to	us…

36

Inverse	Hash	Function
• H(k)	=	c	=	k	mod	11

– What	would	be	an	adversarial	sequence	of	keys	to	make	my	hash	table	
perform	poorly?

• It's	easy	to	compute	the	inverse,	h-1(c)	=>	k	
– Write	an	expression	to	enumerate	an	adversarial	sequence?
– 11*i +	c			for	i=0,1,2,3,…

• We	want	hash	function,	h(k),	where	an	inverse	function,	
h-1(c)	is	hard to	compute
– Said	differently,	we	want	a	function	where	given	a	location,	c,	in	the	

table	it	would	be	hard	to	find	a	key	that	maps	to	that	location

• We	call	these	functions	one-way	hash	functions
• Key	insight:		What's	hard	to	accomplish	when	you	actually	

try	is	even	harder	to	accomplish	when	you	do	not	try

37

One-Way	Hash	Functions
• Recall:		What's	hard	to	accomplish	when	you	actually	try	is	even	harder	

to	accomplish	when	you	do	not	try

• So	if	we	find	a	hash	function	where	it	would	be	hard	to	find	a	key	that	
maps	to	a	given	location,	i,	when	we	are	trying	to	be	an	adversary…

• …then	under	normal	circumstances	we	would	not	expect	to	accidentally	
(or	just	in	nature)	produce	a	sequence	of	keys	that	leads	to	a	lot	of	
collisions

• Main	Point:	It's	obviously	hard	to	predict	randomness,	but	computers	
aren't	random.		However,	if	we	can	find	a	one-way	hash	function,	then	
even	though	our	adversary	knows	we're	not	being	random,	he'll	still	have	
a	hard	time

38

Cryptographic	Hash	Functions
• Hash	functions	can	be	used	for	purposes	other	than	hash	tables
• We	can	use	a	hash	function	to	produce	a	"digest"	(signature,	fingerprint,	

checksum)	of	a	longer	message
– It	acts	as	a	unique	"signature"	of	the	original	content	

• The	hash	code	can	be	used	for	purposes	of	authentication	and	validation
– Send	a	message,	m,	and	h(m)	over	a	network.		
– The	receiver	gets	the	message,	m',	and	computes	h(m')	which	should	match	the	

value	of	h(m)	that	was	attached
– This	ensures	it	wasn't	corrupted	accidentally	or	changed	on	purpose

• We	no	longer	need	h(m)	to	be	in	the	range	of	tableSize since	we	don't	have	a	
table	anymore
– The	hash	code	is	all	we	care	about	now
– We	can	make	the	hash	code	much	longer	(64-bits	=>	16E+18	options,	

128-bits	=>	256E+36	options)	so	that	chances	of	collisions	are	hopefully	miniscule		
(more	chance	of	a	hard	drive	error	than	a	collision)

http://people.csail.mit.edu/shaih/pubs/Cryptographic-Hash-Functions.ppt

39

Another	Example:	Passwords
• Should	a	company	just	store	passwords	plain	text?

– No
• We	could	encrypt	the	passwords	but	here's	an	alternative
• Just	don't	store	the	passwords!
• Instead,	store	the	hash	codes	of	the	passwords.

– What's	the	implication?
– Some	alternative	password	might	just	hash	to	the	same	location	but	that	

probability	is	even	smaller	than	someone	trying	to	hack	your	system	of	
encrypted	passwords

• Remember	the	idea	that	if	its	hard	to	do	when	you	try,	the	chance	that	it	naturally	
happens	is	likely	smaller

– When	someone	logs	in	just	hash	the	password	they	enter	and	see	if	it	matches	
the	hashcode.

• If	someone	gets	into	your	system	and	gets	the	hash	codes,	does	that	
benefit	them?	

– No!

40

Cryptographic	Hash	Functions
• A	cryptographic	hash	function	should	have	the	qualities
• Given	d,	it	is	hard	to	find	an	input,	M,	such	that	h(M)	=	d

– (i.e.	One-way:		given	a	hash	code,	hard	to	find	an	input	that	generates	it)
• Collision	Resistant

– It	should	be	hard	to	generate	M1	and	M2	such	that	h(M1)	=	h(M2)
– Remember	what	the	birthday	paradox	says?

• An	n-bit	code	has	2n options…if	we	generate	random	numbers	when	would	we	
expect	a	duplicate?

• Given	an	M1	and	h(M1)	=	d,	it	should	be	hard	to	find	an	M2	such	that	
h(M2)	=	d
– Given	one	input	and	its	hash	code	it	should	be	hard	to	tweak	M1	to	make	an	

M2	that	yields	an	identical	code
• MD5	and	SHA2	are	examples	of	these	kind	of	functions

http://people.csail.mit.edu/shaih/pubs/Cryptographic-Hash-Functions.ppt

41

Avalanche	Effect• A	desirable	property	for	a	cryptographic	hash	function	is	that	it	exhibit	the	
"avalanche	effect"

• Avalanche	effect	says…
– Formally:		A	change	of	1-bit	in	the	input	should	produce	on	average	half	of	the	

output-bits	to	change	(i.e.	probability	of	an	output	bit	change	due	to	that	input	
change	should	be	½)

– Informally:		A	small	change	in	input	should	yield	a	big	change	in	output
• Along	that	same	line,	think	about	which	bit-wise	logic	operation	would	be	

best	suited	for	encryption
– Ex.	If	I	told	you	which	logic	operation	I	used	and	you	saw	the	output,	would	it	help	you	

decipher	the	input	that	generated	that?	

• XOR's	are	often	used	in	cryptographic	hash	function	along	with	bit	shifting	
and	rotations

X1 X2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

X1 X2 AND
0 0 0
0 1 0
1 0 0
1 1 1

X1 X2 OR
0 0 0
0 1 1
1 0 1
1 1 1

42

Example
• Encrypt:	"ONE	MORE	HW"	to	produce	a	5-bit	
hash	by	XOR-ing the	codes

Char. Bin. Char. Bin. Char. Bin. Char. Bin. Char. Bin.

A 00000 F 00101 K 01010 P 01111 U 10100

B 00001 G 00110 L 01011 Q 10000 V 10101

C 00010 H 00111 M 01100 R 10001 W 10110

D 00011 I 01000 N 01101 S 10010 X 10111

E 00100 J 01001 O 01110 T 10011 Y 11000

Sp 11010 Z 11001

43

Summary

• Hash	tables	are	LARGE	arrays	with	a	function	
that	attempts	to	compute	an	index	from	the	
key

• In	the	general	case,	chaining is	the	best	
collision	resolution	approach

• The	functions	should	spread	the	possible	keys	
evenly	over	the	table

