
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

BLOOM	FILTERS
An	imperfect	set…

3

Set	Review
• Recall	the	operations	a	set	performs…

– Insert(key)
– Remove(key)
– Contains(key)	:	bool (a.k.a.	find())

• We	can	think	of	a	set	as	just	a	map	without	
values…just	keys

• We	can	implement	a	set	using
– List

• O(n)	for	some	of	the	three	operations
– (Balanced)	Binary	Search	Tree

• O(log	n)	insert/remove/contains
– Hash	table

• O(1)	insert/remove/contains

"Jordan"

"Frank" "Percy"

"Anne" "Greg" "Tommy"

4

Bloom	Filter	Idea
• Suppose	you	are	looking	to	buy	the	next	hot	consumer	device.		

You	can	only	get	it	in	stores	(not	online).		Several	stores	who	carry	
the	device	are	sold	out.		Would	you	just	start	driving	from	store	to	
store?

• You'd	probably	call	ahead	and	see	if	they	have	any	left.	
• If	the	answer	is	"NO"…

– There	is	no	point	in	going…it's	not	like	one	will	magically	appear	at	the	
store

– You	save	time

• If	the	answer	is	"YES"
– It's	worth	going…
– Will	they	definitely	have	it	when	you	get	there?	
– Not	necessarily…they	may	sell	out	while	you	are	on	your	way

• But	overall	this	system	would	at	least	help	you	avoid	wasting	time

5

Bloom	Filter	Idea
• A	Bloom	filter	is	a	set	such	that	"contains()"	will	quickly answer…

– "No"	correctly	(i.e.	if	the	key	is	not	present)
– "Yes"	with	a	chance	of	being	incorrect	(i.e.	the	key	may	not	be	present	but	it	might	still	

say	"yes")
• Why	would	we	want	this?

– A	Bloom	filter	usually	sits	in	front	of	an	actual	set/map
– Suppose	that	set/map	is	EXPENSIVE	to	access

• Maybe	there	is	so	much	data	that	the	set/map	doesn't	fit	in	memory	and	sits	on	a	disk	drive	
or	another	server	as	is	common	with	most	database	systems
– Disk/Network	access	=	~milliseconds
– Memory	access	=	~nanoseconds

– The	Bloom	filter	holds	a	"duplicate"	of	the	keys	but	uses	FAR	less	memory	and	thus	is	
cheap	to	access	(because	it	can	fit	in	memory)

– We	ask	the	Bloom	filter	if	the	set	contains	the	key
• If	it	answers	"No"	we	don't	have	to	spend	time	search	the	EXPENSIVE	set
• If	it	answers	"Yes"	we	can	go	search	the	EXPENSIVE	set

6

Bloom	Filter	Explanation
• A	Bloom	filter	is…

– A	hash	table	of	individual	bits	(Booleans:	T/F)
– A	set	of	hash	functions,	{h1(k),	h2(k),	…	hs(k)}

• Insert()
– Apply	each	hi(k)	to	the	key
– Set	a[hi(k)]	=	True

• Contains()
– Apply	each	hi(k)	to	the	key
– Return	True	if	all a[hi(k)]	=	True
– Return	False	otherwise
– In	other	words,	answer	is	"Maybe"	or	"No"

• May	produce	"false	positives"
• May	NOT	produce	"false	negatives"

• We	will	ignore	removal	for	now

0 0 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

0
9

0
10

insert("Tommy")

h1(k) h2(k) h3(k)

0 1 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

1
9

0
10

insert("Jill")

h1(k) h2(k) h3(k)

0 1 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

1
9

0
10

contains("John")

h1(k) h2(k) h3(k)

a

a

a

7

Implementation	Details
• Bloom	filter's	require	only	a	bit	per	location,	

but	modern	computers	read/write	a	full	byte	
(8-bits)	at	a	time	or	an	int (32-bits)	at	a	time

• To	not	waste	space	and	use	only	a	bit	per	entry	
we'll	need	to	use	bitwise	operators

• For	a	Bloom	filter	with	N-bits	declare	an	array	
of	N/8	unsigned	char's	(or	N/32	unsigned	ints)	
– unsigned	char	filter8[ceil(N/8)];

• To	set	the	k-th entry,	
– filter[k/8]	|=	(1	<<	(k%8));

• To	check	the	k-th entry
– if	(filter[k	/	8]	&	(1	<<	(k%8)))

0 0 0 1 1
7 6 5 4 3

0
2

1 0
1 0

0
15

0
14

0
13

filter[0]

0 0 0 0 0
12 11 10 9 8

filter[1]

8

Probability	of	False	Positives
• What	is	the	probability	of	a	false	positive?
• Let's	work	our	way	up	to	the	solution

– Probability	that	one	hash	function	selects	or	does	not	select	a	
location	x	assuming	"good"	hash	functions
• P(hi(k)	=	x)	=	1/m
• P(hi(k)	≠	x)	=	[1	– 1/m]

– Probability	that	all	j	hash	functions	don't	select	a	location
• [1	– 1/m]j

– Probability	that	all	s-entries	in	the	table	have	not	selected	
location	x
• [1	– 1/m]sj

– Probability	that	a	location	x	HAS	been	chosen	by	the	previous	
n	entries
• 1	– [1	– 1/m]nj

– Math	factoid:		For	small	y,	ey =	1+y		(substitute	y	=	-1/m)
• 1	– e-nj/m

– Probability	that	all	of	the	j	hash	functions	find	a	location	True	
once	the	table	has	n	entries
• (1	– e-nj/m)j

0 0 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

0
9

0
10

h1(k) h2(k) h3(k)

a

9

Probability	of	False	Positives
• Probability	that	all	of	the	j	hash	functions	find	a	location	

True	once	the	table	has	s	entries
– (1	– e-nj/m)j

• Define	α =	n/m	=	loading	factor
– (1	– e-αj)j

• First	"tangent":		Is	there	an	optimal	number	of	hash	
functions	(i.e.	value	of	j)
– Use	your	calculus	to	take	derivative	and	set	to	0
– Optimal	#	of	hash	functions,	j	=	ln(2)	/	α

• Substitute	that	value	of	j	back	into	our	probability	above
– (1	– e-αln(2)/α)ln(2)/α=	(1	– e-ln(2))ln(2)/α =	(1	– 1/2) ln(2)/α =	2-ln(2)/α

• Final	result	for	the	probability	that	all	of	the	j	hash	
functions	find	a	location	True	once	the	table	has	s	
entries:			 2-ln(2)/α

– Recall	0	≤	α ≤	1

0 0 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

0
9

0
10

h1(k) h2(k) h3(k)

a

10

Sizing	Analysis
• Can	also	use	this	analysis	to	answer	or	a	more	"useful"	

question…
• …To	achieve	a	desired	probability	of	false	positive,	what	

should	the	table	size	be	to	accommodate	n	entries?
– Example:	I	want	a	probability	of	p=1/1000	for	false	positives	when	I	

store	n=100	elements
– Solve	2-m*ln(2)/n <	p

• Flip	to	2m*ln(2)/n ≥	1/p
• Take	log	of	both	sides	and	solve	for	m
• m	≥ [n*ln(1/p)]	/	ln(2)2	 ≈	2n*ln(1/p) because	ln(2)2 =	0.48	≈	½

– So	for	p=.001	we	would	need	a	table	of	m=14*n	since	ln(1000)	≈	7
• For	100	entries,	we'd	need	1400	bits	in	our	Bloom	filter

– For	p	=	.01	(1%	false	positives)	need	m=9.2*n	(9.2	bits	per	key)
– Recall:	Optimal	#	of	hash	functions,	j	=	ln(2)	/	α

• So	for	p=.01	and	α	=	1/(9.2)	would	yield	j	≈	7	hash	functions		

11

TRIES	

12

Review	of	Set/Map	Again
• Recall	the	operations	a	set	or	map	performs…

– Insert(key)
– Remove(key)
– find(key)	:	bool/iterator/pointer			
– Get(key)	:	value			[Map	only]

• We	can	implement	a	set	or	map	using	a	binary	search	tree
– Search	=	O(log(n))

• But	what	work	do	we	have	to	do	
at	each	node?
– Compare	(i.e.	string	compare)
– How	much	does	that	cost?

• Int =	O(1)
• String	=	O(m)	where	m	is	

length	of	the	string
– Thus,	search	costs	O(m	*	log(n))

"help"

"hear" "ill"

"heap" "help" "in"

13

Review	of	Set/Map	Again

• We	can	implement	a	set	or	map	using	a	hash	table
– Search	=	O(1)

• But	what	work	do	we	have	to	do	once	we	hash?
– Compare	(i.e.	string	compare)
– How	much	does	that	cost?

• Int =	O(1)
• String	=	O(m)	where	m	is	
length	of	the	string

– Thus,	search	costs	O(m)

healhelp ill hear
0 1 2 3 4 5

3.45

"help"

Conversion
function

2

14

Tries
• Assuming	unique	keys,	can	we	still	

achieve	O(m)	search	but	not	have	
collisions?
– O(m)	means	the	time	to	compare	is	

independent of	how	many	keys	
(i.e.	n)	are	being	stored	and	only	depends	
on	the	length	of	the	key

• Trie(s)	(often	pronounced	"try"	or	
"tries")	allow	O(m)	retrieval
– Sometimes	referred	to	as	a	radix	tree	or	

prefix	tree

• Consider	a	trie for	the	keys
– "HE",	"HEAP",	"HEAR",	"HELP",	"ILL",	"IN"

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

15

Tries
• Rather	than	each	node	storing	a	full	key	

value,	each	node	represents	a	prefix	of	
the	key

• Highlighted	nodes	indicate	terminal	
locations
– For	a	map	we	could	store	the	associated	

value	of	the	key	at	that	terminal	location

• Notice	we	"share"	paths	for	keys	that	
have	a	common	prefix

• To	search	for	a	key,	start	at	the	root	
consuming	one	unit	(bit,	char,	etc.)	of	the	
key	at	a	time
– If	you	end	at	a	terminal	node,	SUCCESS
– If	you	end	at	a	non-terminal	node,	FAILURE

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

16

Tries
• To	search	for	a	key,	start	at	the	root	

consuming	one	unit	(bit,	char,	etc.)	of	the	
key	at	a	time
– If	you	end	at	a	terminal	node,	SUCCESS
– If	you	end	at	a	non-terminal	node,	FAILURE

• Examples:
– Search	for	"He"
– Search	for	"Help"
– Search	for	"Head"

• Search	takes	O(m)	where	m	=	length	of	
key
– Notice	this	is	the	same	as	a	hash	table

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

A "value" type
could be stored for
each non-terminal

node

17

Your	Turn

• Construct	a	trie to	store	the	set	of	words
– Ten
– Tent
– Then
– Tense
– Tens
– Tenth

18

Application:	IP	Lookups
• Network	routers	form	the	backbone	of	the	

Internet
• Incoming	packets	contain	a	destination	IP	

address	(128.125.73.60)
• Routers	contain	a	"routing	table"	mapping	

some	prefix	of	destination	IP	address	to	
output	port
– 128.125.x.x	=>	Output	port	C
– 128.209.32.x	=>	Output	port	B
– 128.x.x.x	=>	Output	port	D
– 132.x.x.x	=>	Output	port	A

• Keys	=	Match	the	longest	prefix
– Keys	are	unique

• Value	=	Output	port

Octet	1 Octet	2 Octet	3 Port

10000000 01111101 C

10000000 11010001 00100000 B

10000000 D

10000100 A

19

IP	Lookup	Trie
• A	binary	trie implies	that	the	

– Left	child	is	for	bit	'0'	
– Right	child	is	for	bit	'1'

• Routing	Table:
– 128.125.x.x	=>	Output	port	C
– 128.209.32.x	=>	Output	port	B
– 128.x.x.x	=>	Output	port	D
– 132.x.x.x	=>	Output	port	A

…

-
D

- -

A

…

1

0

0

0

0 1

00

0

0 1

C

Octet	1 Octet	2 Octet	3 Port

10000000 01111101 C

10000000 11010001 00100000 B

10000000 D

10000100 A

0

B

20

Structure	of	Trie Nodes
• What	do	we	need	to	store	in	each	

node?
• Depends	on	how	"dense"	or	

"sparse"	the	tree	is?
• Dense	(most	characters	used)	or	

small	size	of	alphabet	of	possible	key	
characters
– Array	of	child	pointers
– One	for	each	possible	character	in	the	

alphabet

• Sparse
– (Linked)	List	of	children
– Node	needs	to	store	______

V*

template < class V >
struct TrieNode{

V* value; // NULL if non-terminal
TrieNode<V>* children[26];

};

template < class V >
struct TrieNode{

char key;
V* value;
TrieNode<V>* next;
TrieNode<V>* children;

};

a zb …

h r

c
f

s

c f

r

s

h

21

Search
• Search	consumes	one	

character	at	a	time	until	
– The	end	of	the	search	key	

• If	value	pointer	exists,	then	
the	key	is	present	in	the	map

– Or	no	child	pointer	exists		in	
the	TrieNode

• Insert
– Search	until	key	is	consumed	

but	trie path	already	exists
• Set	v	pointer	to	value

– Search	until	trie path	is	NULL,	
extend	path	adding	new	
TrieNodes and	then	add	value	
at	terminal

V* search(char* k, TrieNode<V>* node)
{

while(*k != '\0' && node != NULL){
node = node->children[*k – 'a'];
k++;

}
if(node){

return node->v;
}

}

void insert(char* k, Value& v)
{

TrieNode<V>* node = root;
while(*k != '\0' && node != NULL){

node = node->children[*k – 'a']; k++;
}
if(node){

node->v = new Value(v);
}
else {

// create new nodes in trie
// to extend path
// updating root if trie is empty

}
}

22

SUFFIX	TREES	(TRIES)

23

Prefix	Trees	(Tries)	Review
• What	problem	does	a	prefix	tree	solve

– Lookups	of	keys	(and	possible	associated	values)

• A	prefix	tree	helps	us	match	1-of-n	keys
– "He"
– "Help"
– "Hear"
– "Heap"
– "In"
– "Ill"

• Here	is	a	slightly	different	problem:
– Given	a	large	text	string,	T,	can	we	find	certain	substrings	or	answer	

other	queries	about	patterns	in	T
– A	suffix	tree	(trie)	can	help	here

24

Suffix	Trie Slides
• http://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixtrees.pdf

25

Suffix	Trie Wrap-Up

• How	many	nodes	can	a	suffix	trie have	for	text,	T,	
with	length	|T|?
– |T|2

– Can	we	do	better?

• Can	compress	paths	without	branches	into	a	single	
node

• Do	we	need	a	suffix	trie to	find	substrings	or	answer	
certain	queries?
– We	could	just	take	a	string	and	search	it	for	a	certain	
query,	q

– But	it	would	be	slow	=>		O(|T|)	and	not	O(|q|)

26

What	Have	We	Learned
• [Key	Point]:		Think	about	all	the	data	structures	we've	been	

learning?
– There	is	almost	always	a	trade-off	of	memory	vs.	speed	

• i.e.	Space	vs.	time
– Most	data	structures	just	exploit	different	points	on	that	time-space	

tradeoff	continuum
– Think	about	searches	in	your	project…Do	we	need	a	map?
– No,	we	could	just	search	all	items	each	time	a	keyword	is	provided

• But	think	how	slow	that	would	be
– So	we	build	a	data	structure	(i.e.	a	map)	that	replicates	data	and	takes	

a	lot	of	memory	space…
– …so	that	we	can	find	data	faster

