
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe

2

LOG	STRUCTURED	MERGE	TREES

3

Series	Summation	Review

• Let	n	=	1	+	2	+	4	+	…	+	2k =	∑ 2#$
#%& .		What	is	n?

– n	=	2k+1-1

• What	is	log2(1)	+	log2(2)	+	log2(4)	+	log2(8)+…+	log2(2k)	
=	0	+	1	+	2	+	3+…	+	k	=	∑ 𝑖$

#%&
– O(k2)

• So	then	what	if	k	=	log(n)	as	in:
log2(1)	+	log2(2)	+	log2(4)	+	log2(8)+…+	log2(2log(n))	
– O(log2n)

Arithmetic series:
∑ 𝑖(
#%) = (((,))

.
= 𝜃 𝑛.

Geometric series

1 𝑐#
(

#%)
=
𝑐(,) − 1
𝑐 − 1 = 𝜃 𝑐(

4

Merge	Trees	Overview

• Consider	a	list	of	(pointers	
to)	arrays	with	the	
following	constraints
– Each	array	is	sorted	though	
no	ordering	constraints	
exist	between	arrays

– The	array	at	list	index	k	is	
of	exactly	size	2k or	empty

5

NULL …
0 1 2 3 4 …

2 0 3
4 1

6
9

12
14
18
20

Si
ze

 =
 8

…

51

Si
ze

 =
 1

6
if

no
n-

em
pt

y

Note: These are
the keys for a set

(or key,value pairs
for a map)

An array at list
location k can be of

size 2k or empty

5

Merge	Trees	Size
• Define…

– n	as	the	#	of	keys	in	the	entire	
structure

– k	as	the	size	of	the	list	(i.e.	positions	
in	the	list)

• Given	k,	what	is	n?
– Let	n	=	1	+	2	+	4	+	…	+	2k =	∑ 2#$

#%& .		
What	is	n?

• n=2k-1

5

NULL …
0 1 2 3 4 …

2 0 3
4 1

6
9

12
14
18
20

Si
ze

 =
 8

…

51

Si
ze

 =
 1

6
if

no
n-

em
pt

y

Note: These are
the keys for a set

(or key,value pairs
for a map)

An array at list
location k can be of

size 2k or empty

6

Merge	Trees	Find	Operation
• To	find	an	element	(or	check	if	it	

exists)
• Iterate	through	the	arrays	in	order	

(i.e.	start	with	array	at	list	position	
0,	then	the	array	at	list	position	1,	
etc.)
– In	each	array	perform	a	binary	search

• If	you	reach	the	end	of	the	list	of	
arrays	without	finding	the	value	it	
does	not	exist	in	the	set/map

5

NULL …
0 1 2 3 4 …

2 0 3
4 1

6
9

12
14
18
20

Si
ze

 =
 8

…

51

Si
ze

 =
 1

6
if

no
n-

em
pt

y

Note: These are
the keys for a set

(or key,value pairs
for a map)

An array at list
location k can be of

size 2k or empty

7

Find	Runtime
• What	is	the	worst	case	runtime	of	

find?
– When	the	item	is	not	present	which	

requires,	a	binary	search	is	performed	
on	each	list

• T(n)	=	log2(1)	+	log2(2)	+	…	log2(2k)
• =	0	+	1	+	2	+	…	+	k	=	∑ 𝑖$

#%& 	
=	O(k2)

• But	let's	put	that	in	terms	of	the	
number	of	elements	in	the	
structure	(i.e.	n)
– Recall	k	=	log2(n)+1

• So	find	is	O(log2(n)2)

5

NULL …
0 1 2 3 4 …

2 0 3
4 1

6
9

12
14
18
20

Si
ze

 =
 8

…

51

Si
ze

 =
 1

6
if

no
n-

em
pt

y

Note: These are
the keys for a set

(or key,value pairs
for a map)

An array at list
location k can be of

size 2k or empty

8

Improving	Find's	Runtime

• While	we	might	be	okay	with	[log(n)]2,	how	
might	we	improve	the	find	runtime	in	the	
general	case?
– Hint:		I	would	be	willing	to	pay	O(1)	to	know	if	a	
key	is	not	in	a	particular	array	without	having	to	
perform	find

• A	Bloom	filter	could	be	maintained	alongside	
each	array	and	allow	us	to	skip	performing	a	
binary	search	in	an	array

9

Insertion	Algorithm
• Let	j	be	the	smallest	integer	such	

that	array	j	is	empty	(first	empty	
slot	in	the	list	of	arrays)

• An	insertion	will	cause
– Location	j's	array	to	become	filled
– Locations	0	through	j-1	to	become	

empty

5

NULL …
0 1 2 3 …

2 0
4 1

6
9

12
14
18
20

Si
ze

 =
 8

An array at list location k can be of
size 2k or empty

… … …
0 1 2 3 …

0
1
6
9

12
14
18
20

Si
ze

 =
 8

insert(19)

Before insertion

After insertion

2
4
5

19

j=2

10

Insertion	Algorithm
• Starting	at	array	0,	iteratively	merge	the	previously	merged	

array	with	the	next,	stopping	when	an	empty	location	is	
encountered

5

NULL
0 1 2

2
4

… … NULL …
0 1 2 3 …

0
1
6
9

12
14
18
20

Si
ze

 =
 8

insert(19)

2
4
5

19

19

List 0 is full so merge two
arrays of size 1

NULL
0 1 2

2
4

List 1 is full so merge two
arrays of size 2

19
5

Merge

Merge

11

Insert	Examples

… … NULL
0 1 2

2
4
5

19

… … NULL
0 1 2

insert(4)

4

… … NULL
0 1 2

insert(2)

2
4

… … NULL
0 1 2

insert(5)

2
4

5

insert(19)

… … NULL
0 1 2

2
4
5

19

insert(8)

8

… … NULL
0 1 2

2
4
5

19

insert(7)

7
8

… … NULL
0 1 2

2
4
5

19

insert(12)

7
8

12

Cost = 1 /
Stop @ 0

Cost = 2 /
Stop @ 1

Cost = 1 /
Stop @ 0

Cost = 4 /
Stop @ 2

Cost = 1 /
Stop @ 0

Cost = 2 /
Stop @ 1

Cost = 1 /
Stop @ 0

12

Insertion	Runtime:	First	Look
• Best	case?

– First	list	is	empty	and	allows	direct	insertion	in	
O(1)

• Worst	case?
– All	list	entries	(arrays)	are	full	so	we	have	to	merge	

at	each	location
– In	this	case	we	will	end	with	an	array	of	size	n=2k

in	position	k
– Also	recall	merging	two	arrays	of	size	m	is	Θ(m)
– So	the	total	cost	of	all	the	merges	is	

1	+	2	+	4	+	8	+	…	+	n	=	2*n-1	=	Θ(n)	=	Θ(2k)
• But	if	the	worst	case	occurs	how	soon	can	it	

occur	again?		
– It	seems	the	costs	vary	from	one	insert	to	the	next
– This	is	a	good	place	to	use	amortized	analysis

… … NULL
0 1 2

2
4
5

19

… … NULL
0 1 2

insert(4)

4

… … NULL
0 1 2

insert(2)

2
4

… … NULL
0 1 2

insert(5)

2
4

5

insert(19)

13

Total	Cost	for	N	insertions

• Total	cost	of	n=16	insertions:
– 1+2+1+4+1+2+1+8+1+2+1+4+1+2+1+16

• =1*n/2	+	2*n/4	+		4*n/8	+	8*n/16	+	n
• =n/2	+	n/2	+	n/2	+	n/2	+	n
• =n/2*log2(n) +	n
• Amortized	cost	=	Total	cost	/	n	operations

– log2(n)/2	+	1	=	O(log2(n))

14

Amortized	Analysis	of	Insert
• We	have	said	when	you	end	(place	an	array)	in	

position	k	you	have	to	do	O(2k+1)	work	for	all	the	
merges

• How	often	do	we	end	in	position	k
– The	0th position	will	be	free	with	probability	½	

(p=0.5)
– We	will	stop	at	the	1st position	with	probability	¼	

(p=0.25)
– We	will	stop	at	the	2nd position	with	probability	1/8	

(p=0.125)
– We	will	stop	at	the	kth position	with	probability	1/2k

=	2-k

• So	we	pay	2k+1 with	probability	2-(k+1)

• Suppose	we	have	n	items	in	the	structure	(i.e.	max	
k	is	log2n)	what	is	the	expected	cost	of	inserting	a	
new	element

– ∑ 2$,)26($,))789	(()
$%& = ∑ 1789	(()

$%& = log	(𝑛)

… … NULL
0 1 2

2
4
5

19

… … NULL
0 1 2

insert(4)

4

… … NULL
0 1 2

insert(2)

2
4

… … NULL
0 1 2

insert(5)

2
4

5

insert(19)

Cost = 1 /
Stop @ 0

Cost = 2 /
Stop @ 1

Cost = 1 /
Stop @ 0

Cost = 4 /
Stop @ 2

15

Summary
• Variants	of	log	structured	merge	trees	have	found	popular	

usage	in	industry
– Starting	array	size	might	be	fairly	large	(size	of	memory	of	a	single	

server)
– Large	arrays	(from	merging)	are	stored	on	disk

• Pros:
– Ease	of	implementation	
– Sequential	access	of	arrays	helps	lower	its	constant	factors

• Operations:
– Find	=	log(n)2

– Insert	=	Amortized	log(n)
– Remove	=	often	not	considered/supported

16

SPLAY	TREES

17

Sources	/	Reading

• Material	for	these	slides	was	derived	from	the	
following	sources
– https://www.cs.cmu.edu/~sleator/papers/self-
adjusting.pdf

– http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf
– http://www.cs.umd.edu/~meesh/420/Notes/MountNotes
/lecture10-splay.pdf

• Nice	Visualization	Tool
– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

18

Splay	Tree	Intro
• Another	map/set	implementation	(storing	keys	or	key/value	pairs)

– Insert,	Remove,	Find

• Recall…To	do	m inserts/finds/removes	on	an	RBTree w/	n
elements	would	cost?
– O(m*log(n))

• Splay	trees	have	a	worst	case	find,	insert,	delete	time	of…
– O(n)

• However,	they	guarantee	that	if	you	do	m operations	on	a	splay	
tree	with	n elements	that	the	total	("amortized"…uh-oh)	time	is
– O(m*log(n))

• They	have	a	further	benefit	that	recently	accessed	elements	will	
be	near	the	top	of	the	tree	
– In	fact,	the	most	recently	accessed	item	is	always	at	the	top	of	the	tree

19

Splay	Operation

• Splay	means	"spread"
• As	you	search	for	an	item	or	after	
you	insert	an	item	we	will	perform	a	
series	of	splay	operations

• These	operations	will	cause	the	
desired	node	to	always	end	up	at	the	
top	of	the	tree
– A	desirable	side-effect	is	that	accessing	
a	key	multiple	times	within	a	short	time	
window	will	yield	fast	searches	because	
it	will	be	near	the	top

– See	next	slide	on	principle	of	locality

R

T

T

If we search for or
insert T…

…T will end up as the
root node with the old
root in the top level or

two

R

20

Principle	of	Locality
• 2	dimensions	of	this	principle:	space	&	time
• Spatial	Locality – Future	accesses	will	likely	cluster	
near	current	accesses
– Instructions	and	data	arrays	are	sequential	(they	are	all	
one	after	the	next)

• Temporal	Locality	– Future	accesses	will	likely	be	to	
recently	accessed	items
– Same	code	and	data	are	repeatedly	accessed	(loops,	
subroutines,	if(x	>	y)	x++;

– 90/10	rule:		Analysis	shows	that	usually	10%	of	the	written	
instructions	account	for	90%	of	the	executed	instructions

• Splay	trees	help	exploit	temporal	locality	by	
guaranteeing	recently	accessed	items	near	the	top	of	
the	tree

21

Splay	Cases
G

P

X

a b

c

G

P

X

b c

a

G

P

X

b c

a

1.

2.

3.
Zig-Zig

d R

X

b

a

X

P

G

c d

b

a

c

R

cX

a b
Right rotate of X,R

d

d

1

2 X

P G

a b c d

X

G P

a b c d

1

2

Zig-Zag

Left rotate of X,R

Root/Zig Case
(Single Rotation)

22

Find(1)
6

75

4

3

Zig-Zig2

1

6

75

4

1

2

3

6

71

2

3

4

5

1

6

2

3

4

5

7

Zig-Zig

Zig

Resulting
Tree

23

Find(3)

• Notice	the	tree	is	starting	to	look	at	lot	more	
balanced

Zig-Zag
Resulting

Tree

1

6

2

3

4

5

7

1

6

2

3

4

7

5

3

6

2

1

4 7

5

Zig-Zag

24

Worst	Case

• Suppose	you	want	to	make	the	amortized	time	
(averaged	time	over	multiple	calls	to	
find/insert/remove)	look	bad,	you	might	try	to	
always	access	the	______________	node	in	the	tree
– Deepest

• But	splay	trees	have	a	property	that	as	we	keep	
accessing	deep	nodes	the	tree	starts	to	balance	and	
thus	access	to	deep	nodes	start	by	costing	O(n)	but	
soon	start	costing	O(log	n)

25

Insert(11)
20

3012

15 255

3 10

8

Resulting Tree

20

3012

15 255

3 10

8 11

Zig-Zig

20

3012

15 2511

10

5

3 8

20

30

12

15

25

11

10

5

3 8

Zig-Zig

26

Insert(4)
20

3012

15 255

3 10

8

Resulting Tree

Zig-Zag Zig-Zig

20

3012

15 255

3 10

84

20

3012

15 254

3 5

8

10

20

30

25

4

3 12

15

5

8

10

27

Activity

• Go	to	
– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

– Try	to	be	an	adversary	by	inserting	and	finding	elements	
that	would	cause	O(n)	each	time

28

Splay	Tree	Supported	Operations
• Insert(x)

– Normal	BST	insert,	then	splay	x
• Find(x)

– Attempt	normal	BST	find(x)	and	splay	last	node	visited
• If	x	is	in	the	tree,	then	we	splay	x
• If	x	is	not	in	the	tree	we	splay	the	leaf	node	where	our	search	ended

• FindMin(),	FindMax()
– Walk	to	far	left	or	right	of	tree,	return	that	node's	value	and	then	splay	that	

node
• DeleteMin(),	DeleteMax()

– Perform	FindMin(),	FindMax()	[which	splays	the	min/max	to	the	root]	then	
delete	that	node	and	set	root	to	be	the	non-NULL	child	of	the	min/max

• Remove(x)
– Find(x)	splaying	it	to	the	top,	then	overwrite	its	value	with	is		

successor/predecessor,	deleting	the	successor/predecessor	node

29

FindMin()	/	DeleteMin()
20

3012

15 255

3 10

8

Resulting Tree

Zig-Zig Zig

20

30

5

12

25

10

8

3

FindMin()

DeleteMin()
Resulting Tree

15

20

305

12 25

10

8

3

15

20

305

12 25

10

8

3

15

20

305

12 25

10

8

15

30

Remove(3)

Zig-Zag

Resulting
Tree

1

6

2

3

4

5

7

1

6

2

3

4

7

5

3

6

2

1

4 7

5

Zig-Zag

3

6

2

1

4 7

5

4

6

2

1

5 7

Copy successor or
predecessor to root

Delete successor
(Remove node or

reattach single child)

31

Top	Down	Splaying

• Rather	than	walking	down	the	
tree	to	first	find	the	value	then	
splaying	back	up,	we	can	splay	
on	the	way	down

• We	will	be	"pruning"	the	big	
tree	into	two	smaller	trees	as	we	
walk,	cutting	off	the	unused	
pathways

32

Top-Down	Splaying

T

2. Final Step (when
reach Target)

L R

T

L R
a b

ba

Root

T

1. Zig (If Target is in 2nd level)

b

aL R
Root

T

b

a

L
R

33

Top-Down	Splaying
3. Zig-Zig

X

Y

Z b

c

X

Y

Zb

a

L R

a
X

Y

Z

b c

L

R
a

c

L R

Z
c

R

L

X

Y

ba

4. Zig-Zag

L R

b
X

Z

c

L Rb

X

Y

Za

c

Y

a

L R

b
Y

Z

c

L Rb

X

Y

Z c

a

X

a

34

Find(3)

Zig-Zag

1

6

2

3

4

5

7

Steps taken on
our journey to

find 3

- - 6

L R

b
Y

Z

c

L Rb

X

Y

Z c

a

X

a

1

L-Tree R-Tree L-Tree R-Tree

72

3

4

5

L R

b
X

Z

c

L Rb

X

Y

Za

c

Y

a

6
R-Tree

74

5

1
L-Tree

2

3

35

Find(3)
R-Tree

1
L-Tree

2

3

T

2. Final Step (when
reach Target)

L R

T

L R
a b

ba

6

74

5

1

2

6

74

5

3

Resulting tree from
bottom-up approach

3

6

2

1

4 7

5

Resulting tree after find

36

Insert(11)
20

3012

15 255

3 10

8

Original Resulting
Tree from Bottom-
up approach

20

30

12

15

25

11

10

5

3 8

- -
L-Tree R-Tree

5

3 10

8

-
L-Tree

12

20

15 30

25

R-Tree

10

5

3 8

12

20

15 30

25

R-Tree

11
L-Tree

37

Summary

• Splay	trees	don't	enforce	balance	but	are	self-
adjusting	to	attempt	yield	a	balanced	tree

• Splay	trees	provide	efficient	amortized	time	
operations	
– A	single	operation	may	take	O(n)
– m	operations	on	tree	with	n	elements	=>	O(m(log	n))

• Uses	rotations	to	attempt	balance
• Provides	fast	access	to	recently	used	keys

