
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp and	David	Kempe



2

LOG	STRUCTURED	MERGE	TREES
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Series	Summation	Review

• Let	n	=	1	+	2	+	4	+	…	+	2k =	∑ 2#$
#%& .		What	is	n?

– n	=	2k+1-1

• What	is	log2(1)	+	log2(2)	+	log2(4)	+	log2(8)+…+	log2(2k)	
=	0	+	1	+	2	+	3+…	+	k	=	∑ 𝑖$

#%&
– O(k2)

• So	then	what	if	k	=	log(n)	as	in:
log2(1)	+	log2(2)	+	log2(4)	+	log2(8)+…+	log2(2log(n))	
– O(log2n)

Arithmetic series:
∑ 𝑖(
#%) = (((,))

.
= 𝜃 𝑛.

Geometric series

1 𝑐#
(

#%)
=
𝑐(,) − 1
𝑐 − 1 = 𝜃 𝑐(
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Merge	Trees	Overview

• Consider	a	list	of	(pointers	
to)	arrays	with	the	
following	constraints
– Each	array	is	sorted	though	
no	ordering	constraints	
exist	between	arrays

– The	array	at	list	index	k	is	
of	exactly	size	2k or	empty
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Merge	Trees	Size
• Define…

– n	as	the	#	of	keys	in	the	entire	
structure

– k	as	the	size	of	the	list	(i.e.	positions	
in	the	list)

• Given	k,	what	is	n?
– Let	n	=	1	+	2	+	4	+	…	+	2k =	∑ 2#$

#%& .		
What	is	n?

• n=2k-1
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Merge	Trees	Find	Operation
• To	find	an	element	(or	check	if	it	

exists)
• Iterate	through	the	arrays	in	order	

(i.e.	start	with	array	at	list	position	
0,	then	the	array	at	list	position	1,	
etc.)
– In	each	array	perform	a	binary	search

• If	you	reach	the	end	of	the	list	of	
arrays	without	finding	the	value	it	
does	not	exist	in	the	set/map
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Find	Runtime
• What	is	the	worst	case	runtime	of	

find?
– When	the	item	is	not	present	which	

requires,	a	binary	search	is	performed	
on	each	list

• T(n)	=	log2(1)	+	log2(2)	+	…	log2(2k)
• =	0	+	1	+	2	+	…	+	k	=	∑ 𝑖$

#%& 	
=	O(k2)

• But	let's	put	that	in	terms	of	the	
number	of	elements	in	the	
structure	(i.e.	n)
– Recall	k	=	log2(n)+1

• So	find	is	O(log2(n)2)
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Improving	Find's	Runtime

• While	we	might	be	okay	with	[log(n)]2,	how	
might	we	improve	the	find	runtime	in	the	
general	case?
– Hint:		I	would	be	willing	to	pay	O(1)	to	know	if	a	
key	is	not	in	a	particular	array	without	having	to	
perform	find

• A	Bloom	filter	could	be	maintained	alongside	
each	array	and	allow	us	to	skip	performing	a	
binary	search	in	an	array
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Insertion	Algorithm
• Let	j	be	the	smallest	integer	such	

that	array	j	is	empty	(first	empty	
slot	in	the	list	of	arrays)

• An	insertion	will	cause
– Location	j's	array	to	become	filled
– Locations	0	through	j-1	to	become	

empty

5

NULL …
0 1 2 3 …

2 0
4 1

6
9

12
14
18
20

Si
ze

 =
 8

An array at list location k can be of 
size 2k or empty

… … …
0 1 2 3 …

0
1
6
9

12
14
18
20

Si
ze

 =
 8

insert(19)

Before insertion

After insertion

2
4
5

19

j=2



10

Insertion	Algorithm
• Starting	at	array	0,	iteratively	merge	the	previously	merged	

array	with	the	next,	stopping	when	an	empty	location	is	
encountered
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Insert	Examples
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Insertion	Runtime:	First	Look
• Best	case?

– First	list	is	empty	and	allows	direct	insertion	in	
O(1)

• Worst	case?
– All	list	entries	(arrays)	are	full	so	we	have	to	merge	

at	each	location
– In	this	case	we	will	end	with	an	array	of	size	n=2k

in	position	k
– Also	recall	merging	two	arrays	of	size	m	is	Θ(m)
– So	the	total	cost	of	all	the	merges	is	

1	+	2	+	4	+	8	+	…	+	n	=	2*n-1	=	Θ(n)	=	Θ(2k)
• But	if	the	worst	case	occurs	how	soon	can	it	

occur	again?		
– It	seems	the	costs	vary	from	one	insert	to	the	next
– This	is	a	good	place	to	use	amortized	analysis
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Total	Cost	for	N	insertions

• Total	cost	of	n=16	insertions:
– 1+2+1+4+1+2+1+8+1+2+1+4+1+2+1+16

• =1*n/2	+	2*n/4	+		4*n/8	+	8*n/16	+	n
• =n/2	+	n/2	+	n/2	+	n/2	+	n
• =n/2*log2(n) +	n
• Amortized	cost	=	Total	cost	/	n	operations

– log2(n)/2	+	1	=	O(log2(n))
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Amortized	Analysis	of	Insert
• We	have	said	when	you	end	(place	an	array)	in	

position	k	you	have	to	do	O(2k+1)	work	for	all	the	
merges

• How	often	do	we	end	in	position	k
– The	0th position	will	be	free	with	probability	½	

(p=0.5)
– We	will	stop	at	the	1st position	with	probability	¼	

(p=0.25)
– We	will	stop	at	the	2nd position	with	probability	1/8	

(p=0.125)
– We	will	stop	at	the	kth position	with	probability	1/2k

=	2-k

• So	we	pay	2k+1 with	probability	2-(k+1)

• Suppose	we	have	n	items	in	the	structure	(i.e.	max	
k	is	log2n)	what	is	the	expected	cost	of	inserting	a	
new	element

– ∑ 2$,)26($,))789	(()
$%& = ∑ 1789	(()

$%& = log	(𝑛)
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Summary
• Variants	of	log	structured	merge	trees	have	found	popular	

usage	in	industry
– Starting	array	size	might	be	fairly	large	(size	of	memory	of	a	single	

server)
– Large	arrays	(from	merging)	are	stored	on	disk

• Pros:
– Ease	of	implementation	
– Sequential	access	of	arrays	helps	lower	its	constant	factors

• Operations:
– Find	=	log(n)2

– Insert	=	Amortized	log(n)
– Remove	=	often	not	considered/supported
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SPLAY	TREES
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Sources	/	Reading

• Material	for	these	slides	was	derived	from	the	
following	sources
– https://www.cs.cmu.edu/~sleator/papers/self-
adjusting.pdf

– http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf
– http://www.cs.umd.edu/~meesh/420/Notes/MountNotes
/lecture10-splay.pdf

• Nice	Visualization	Tool
– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html
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Splay	Tree	Intro
• Another	map/set	implementation	(storing	keys	or	key/value	pairs)

– Insert,	Remove,	Find

• Recall…To	do	m inserts/finds/removes	on	an	RBTree w/	n
elements	would	cost?
– O(m*log(n))

• Splay	trees	have	a	worst	case	find,	insert,	delete	time	of…
– O(n)

• However,	they	guarantee	that	if	you	do	m operations	on	a	splay	
tree	with	n elements	that	the	total	("amortized"…uh-oh)	time	is
– O(m*log(n))

• They	have	a	further	benefit	that	recently	accessed	elements	will	
be	near	the	top	of	the	tree	
– In	fact,	the	most	recently	accessed	item	is	always	at	the	top	of	the	tree
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Splay	Operation

• Splay	means	"spread"
• As	you	search	for	an	item	or	after	
you	insert	an	item	we	will	perform	a	
series	of	splay	operations

• These	operations	will	cause	the	
desired	node	to	always	end	up	at	the	
top	of	the	tree
– A	desirable	side-effect	is	that	accessing	
a	key	multiple	times	within	a	short	time	
window	will	yield	fast	searches	because	
it	will	be	near	the	top

– See	next	slide	on	principle	of	locality

R

T

T

If we search for or 
insert T…

…T will end up as the 
root node with the old 
root in the top level or 

two
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Principle	of	Locality
• 2	dimensions	of	this	principle:	space	&	time
• Spatial	Locality – Future	accesses	will	likely	cluster	
near	current	accesses
– Instructions	and	data	arrays	are	sequential	(they	are	all	
one	after	the	next)

• Temporal	Locality	– Future	accesses	will	likely	be	to	
recently	accessed	items
– Same	code	and	data	are	repeatedly	accessed	(loops,	
subroutines,	if(x	>	y)	x++;

– 90/10	rule:		Analysis	shows	that	usually	10%	of	the	written	
instructions	account	for	90%	of	the	executed	instructions

• Splay	trees	help	exploit	temporal	locality	by	
guaranteeing	recently	accessed	items	near	the	top	of	
the	tree



21

Splay	Cases
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Find(3)

• Notice	the	tree	is	starting	to	look	at	lot	more	
balanced
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Worst	Case

• Suppose	you	want	to	make	the	amortized	time	
(averaged	time	over	multiple	calls	to	
find/insert/remove)	look	bad,	you	might	try	to	
always	access	the	______________	node	in	the	tree
– Deepest

• But	splay	trees	have	a	property	that	as	we	keep	
accessing	deep	nodes	the	tree	starts	to	balance	and	
thus	access	to	deep	nodes	start	by	costing	O(n)	but	
soon	start	costing	O(log	n)
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Insert(11)
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Insert(4)
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Activity

• Go	to	
– https://www.cs.usfca.edu/~galles/visualization/SplayTree.
html

– Try	to	be	an	adversary	by	inserting	and	finding	elements	
that	would	cause	O(n)	each	time
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Splay	Tree	Supported	Operations
• Insert(x)

– Normal	BST	insert,	then	splay	x
• Find(x)

– Attempt	normal	BST	find(x)	and	splay	last	node	visited
• If	x	is	in	the	tree,	then	we	splay	x
• If	x	is	not	in	the	tree	we	splay	the	leaf	node	where	our	search	ended

• FindMin(),	FindMax()
– Walk	to	far	left	or	right	of	tree,	return	that	node's	value	and	then	splay	that	

node
• DeleteMin(),	DeleteMax()

– Perform	FindMin(),	FindMax()	[which	splays	the	min/max	to	the	root]	then	
delete	that	node	and	set	root	to	be	the	non-NULL	child	of	the	min/max

• Remove(x)
– Find(x)	splaying	it	to	the	top,	then	overwrite	its	value	with	is		

successor/predecessor,	deleting	the	successor/predecessor	node
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FindMin()	/	DeleteMin()
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Remove(3)
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Top	Down	Splaying

• Rather	than	walking	down	the	
tree	to	first	find	the	value	then	
splaying	back	up,	we	can	splay	
on	the	way	down

• We	will	be	"pruning"	the	big	
tree	into	two	smaller	trees	as	we	
walk,	cutting	off	the	unused	
pathways
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Top-Down	Splaying
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Top-Down	Splaying
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Find(3)

Zig-Zag

1

6

2

3

4

5

7

Steps taken on 
our journey to 

find 3

- - 6

L R

b
Y

Z

c

L Rb

X

Y

Z c

a

X

a

1

L-Tree R-Tree L-Tree R-Tree

72

3

4

5

L R

b
X

Z

c

L Rb

X

Y

Za

c

Y

a

6
R-Tree

74

5

1
L-Tree

2

3



35

Find(3)
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Insert(11)
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Summary

• Splay	trees	don't	enforce	balance	but	are	self-
adjusting	to	attempt	yield	a	balanced	tree

• Splay	trees	provide	efficient	amortized	time	
operations	
– A	single	operation	may	take	O(n)
– m	operations	on	tree	with	n	elements	=>	O(m(log	n))

• Uses	rotations	to	attempt	balance
• Provides	fast	access	to	recently	used	keys


