
1

CSCI	104

Rafael	Ferreira	da	Silva
rafsilva@isi.edu

Slides	adapted	from:	Mark	Redekopp

2

FINAL	REVIEW

It	is	strongly	recommended	to	be	aware	of	the	runtime	
(or	expected	runtime)	of	insert/remove/search

for	mostly	data	structures	and	algorithms

3

HEAPS

4

Binary	Tree	Review
• Full	binary	tree:	Binary	tree,	T,	where

– If	height	h>0	and	both	subtrees are	full	binary	trees	
of	height,	h-1

– If	height	h==0,	then	it	is	full	by	definition
– (Tree	where	all	leaves	are	at	level	h	and	all	other	

nodes	have	2	children)
• Complete	binary	tree

– Tree	where	levels	0	to	h-1	are	full	and	level	h	is	filled	
from	left	to	right

• Balanced	binary	tree
– Tree	where	subtrees from	any	node	differ	in	height	by	

at	most	1

Full

Complete, but not full

Full

Complete
DAPS, 6th Ed. Figure 15-8

5

Heap	Data	Structure
• Provides	an	efficient	implementation	for	a	priority	queue
• Can	think	of	heap	as	a	complete binary	tree	that	maintains	the	

heap	property:
– Heap	Property:	Every	parent	is	less-than	(if	min-heap)	or	greater-than	(if	max-

heap)	both children
– But	no	ordering	property	between	children

• Minimum/Maximum	value	is	always	the	top	element

Min-Heap

7

918

19 35 14 10

28 39 36 43 16 25

6

Heap	Operations
• Push:	Add	a	new	item	to	the	
heap	and	modify	heap	as	
necessary	

• Pop:	Remove	min/max item	
and	modify	heap	as	
necessary

• Top:	Returns	min/max
• Since	heaps	are	complete	
binary	trees	we	can	use	an	
array/vector	as	the	
container

template <typename T>
class MinHeap
{
public:

MinHeap(int init_capacity);
~MinHeap()
void push(const T& item);
T& top();
void pop();
int size() const;
bool empty() const;

private:
void heapify(int idx);
vector<T> items_;

}

7

Array/Vector	Storage	for	Heap
• Recall:	Full	binary	tree (i.e.	only	the	lowest-level	contains	empty	locations	

and	items	added	left	to	right)	can	be	modeled	as	an array (let’s	say	it	
starts	at	index	1)	where:
– Parent(i)	=	i/2
– Left_child(p)	=	2*p
– Right_child(p)	=	2*p	+	1

7

918

19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = 5/2 = 2
Left_child(5) = 2*5 = 10

Right_child(5) = 2*5+1 = 11

1

2 3

4 5 6 7

8 9 10 11 12 13 14

8

DEPTH	FIRST	SEARCH

9

Depth	First	Search
• Explores	ALL	children	

before	completing	a	
parent

– Note:	BFS	completes	a	parent	
before	ANY	children

• For	DFS	let	us	assign:
– A	start	time	when	the	node	is	first	

found
– A	finish	time	when	a	node	is	

completed

• If	we	look	at	our	nodes	in	
reverse	order	of	finish	time	(i.e.	
last	one	to	finish	back	to	first	
one	to	finish)	we	arrive	at	a…

– Topological	ordering!!!

EE 109

EE 209

EE 354

CS 104

CS 201

EE 457 EE 454L

CS 350 CS 320

CS 170

CS 401 CS 360

101

2

3

4 65 7

8

9

11

12

13 15

16 18

14

17 19

20

21

22 2423

1

2

Start Time
Finish Time

CS 170, CS 104, CS 201, CS 320, CS 360, CS 477, CS 350,
EE 109, EE 209L, EE 354, EE 454L, EE 457

Reverse Finish Time Order

10

DFS	Algorithm
• Visit	a	node

– Mark	as	visited	(started)
– For	each	visited	neighbor,	visit	it	

and	perform	DFS	on	all	of	their	
children

– Only	then,	mark	as	finished

• DFS	is	recursive!!
• If	cycles	in	the	graph,	ensure	we	

don’t	get	caught	visiting	
neighbors	endlessly
– Color	them	as	we	go
– White	=	unvisited,	
– Gray	=	visited	but	not	finished
– Black	=	finished

DFS-Visit (G, u)
1 u.color = GRAY
2 for each vertex v in Adj(u) do
3 if v.color == WHITE then
4 DFS-Visit (G, v)
5 u.color = BLACK
6 finish_list.append(u)

DFS-All (G)
1 for each vertex u
2 u.color = WHITE
3 finish_list = empty_list
4 for each vertex u do
5 if u.color == WHITE then
6 DFS-Visit (G, u, finish_list)
7 return finish_list

11

BINARY	SEARCH	TREES
Properties,	Insertion	and	Removal

12

Binary	Search	Tree
• Binary	search	tree	=	binary	tree	where	all	nodes	meet	the	

property	that:
– All	values	of	nodes	in	left	subtree	are	less-than	or	equal	than	the	

parent’s	value
– All	values	of	nodes	in	right	subtree	are	greater-than	or	equal	than	the	

parent’s	value

25

4718

7 20 32 56

If we wanted to print the values
in sorted order would you use an
pre-order, in-order, or post-order

traversal?

13

Successors	&	Predecessors
• Let's	take	a	quick	tangent	that	will	help	us	understand	how	to	

do	BST	Removal
• Given	a	node	in	a	BST

– Its	predecessor	is	defined	as	the	next	smallest	value	in	the	tree
– Its	successor	is	defined	as	the	next	biggest	value	in	the	tree

• Where	would	you	expect	to	find	a	node's	successor?
• Where	would	find	a	node's	predecessor?

m

14

Predecessors
• If	left	child	exists,	predecessor	is	the	
right	most	node	of	the	left	subtree

• Else	walk	up	the	ancestor	chain	until	
you	traverse	the	first	right	child	
pointer	(find	the	first	node	who	is	a	
right	child	of	his	parent…that	parent	is	
the	predecessor)
– If	you	get	to	the	root	w/o	finding	a	node	
who	is	a	right	child,	there	is	no	
predecessor

50

30

25

20

10

60

Pred(50) = 30

50

30

25

20

10

60

Pred(25)=20

15

Successors
• If	right	child	exists,	successor	is	the	
left	most	node	of	the	right	subtree

• Else	walk	up	the	ancestor	chain	until	
you	traverse	the	first	left	child	pointer	
(find	the	first	node	who	is	a	left	child	
of	his	parent…that	parent	is	the	
successor)
– If	you	get	to	the	root	w/o	finding	a	node	
who	is	a	left	child,	there	is	no	successor

50

30

25

20

10

60

Succ(20) = 25

50

30

25

20

10

60

Succ(30)=50

16

BST	Removal
• To	remove	a	value	from	a	BST…

– First	find	the	value	to	remove	by	walking	the	tree
– If	the	value	is	in	a	leaf	node,	simply	remove	that	leaf	node
– If	the	value	is	in	a	non-leaf	node,	swap	the	value	with	its	in-order	

successor	or	predecessor	and	then	remove	the	value
• A	non-leaf	node's	successor	or	predecessor	is	guaranteed	to	be	a	leaf	node	
(which	we	can	remove)	or	have	1	child	which	can	be	promoted

• We	can	maintain	the	BST	properties	by	putting	a	value's	successor	or	
predecessor	in	its	place

50

30

25

20

10

60

50

30

25

20

10

60

Remove 25

Leaf node so
just delete it

Remove 20

20 is a non-leaf so can't delete it
where it is…swap w/ successor

or predecessor

50

30

25

10

20

60

50

30

20

25

10

60…or…

Either…

Swap w/
pred

Swap w/
succ

50

30

25

20

10

60

Remove 30

1-Child so just
promote child

17

AVL	TREES
Self-balancing	tree	proposed	by	Adelson-Velsky and	Landis

18

AVL	Trees
• A	binary	search	tree	where	the	height	difference	between	left	and	right	subtrees	

of	a	node	is	at	most	1
– Binary	Search	Tree	(BST):	Left	subtree	keys	are	less	than	the	root	and	right	subtree	keys	

are	greater
• Two	implementations:

– Height:		Just	store	the	height	of	the	tree	rooted	at	that	node
– Balance:		Define	b(n)	as	the	balance	of	a	node	=	(Right	– Left)	Subtree	Height

• Legal	values	are	-1,	0,	1
• Balances	require	at	most	2-bits	if	we	are	trying	to	save	memory.	
• Let's	use	balance	for	this	lecture.

20

3010

-1

0 -1

121 25050

30 80 150

20

3010

4

3 2

122 25152

31 81 151

AVL Tree storing Heights AVL Tree storing balances

Balance
factors

19

To	Zig	or	Zag
• The	rotation(s)	required	to	

balance	a	tree	is/are	
dependent	on	the	
grandparent,	parent,	child	
relationships

• We	can	refer	to	these	as	
the	zig-zig case	and	zig-zag	
case

• Zig-zig requires	1	rotation
• Zig-zag requires	2	

rotations	(first	converts	to	
zig-zig)

20

12

10

-2

-1

0

10

12

20

2

1

0

120

200100

20

10

12

-2

-1

0

10

20

12

2

1

0

120

200100

Left-left or Right-right
(a.k.a. Zig-zig)

[One left/right rotation of g]

Left-right or Right-left
(a.k.a. Zig-zag)

[Rotate p then g]

g g

g

p p

g

p p

20

Insert(n)

• If	empty	tree	=>	set	as	root,	b(n)	=	0,	done!
• Insert	n	(by	walking	the	tree	to	a	leaf,	p,	and	
inserting	the	new	node	as	its	child),	set	
balance	to	0,	and	look	at	its	parent,	p
– If	b(p)	=	-1,	then	b(p)	=	0.	Done!
– If	b(p)	=	+1,	then	b(p)	=	0.	Done!
– If	b(p)	=	0,	then	update	b(p)	and	call	insert-fix(p,	n)

12

10

0

0

121

200100

12-1

200100

21

Insert-fix(p,	n)
• Precondition:		p	and	n	are	balanced:	{+1,0,-1}
• Postcondition:	g,	p,	and	n	are	balanced:	{+1,0,-1}
• If	p	is	null	or	parent(p)	is	null,	return
• Let	g	=	parent(p)
• Assume	p	is	left	child	of	g		[For	right	child	swap	left/right,	+/-]

– g.balance +=	-1
– if	g.balance ==	0,	return
– if	g.balance ==	-1,	insertFix(g,	p)
– If	g.balance ==	-2

• If	zig-zig	then	rotateRight(g);	p.balance =	g.balance =	0
• If	zig-zag	then	rotateLeft(p);	rotateRight(g);	

– if	n.balance ==	-1 then	p.balance =	0;	g.balance(+1);	n.balance =	0;
– if	n.balance ==	0	then	p.balance =	0;	g.balance(0);	n.balance =	0;
– if	n.balance ==	+1 then	p.balance =	-1;	g.balance(0);	n.balance =	0;

Note:	If	you	
perform	a	

rotation,	you	will	
NOT	need	to	

recurse.	You	are	
done!

22

Remove	Operation

• Remove	operations	may	also	require	
rebalancing	via	rotations

• The	key	idea	is	to	update	the	balance	of	the	
nodes	on	the	ancestor	pathway

• If	an	ancestor	gets	out	of	balance	then	
perform	rotations	to	rebalance
– Unlike	insert,	performing	rotations	does	not	mean	
you	are	done,	but	need	to	continue

• There	are	slightly	more	cases	to	worry	about	
but	not	too	many	more

23

Remove
• Let	n	=	node	to	remove	(perform	BST	find)	and	p	=	parent(n)
• If	n	has	2	children,	swap	positions	with	in-order	successor	and	

perform	the	next	step
– Now	n	has	0	or	1	child	guaranteed

• If	n	is	not	in	the	root	position	determine	its	relationship	with	
its	parent
– If	n	is	a	left	child,	let	diff	=	+1
– if	n	is	a	right	child,	let	diff	=	-1

• Delete	n	and	update	tree,	including	the	root	if	necessary
• removeFix(p,	diff);

24

RemoveFix(n,	diff)
• If	n	is	null,	return
• Let	ndiff =	+1	if	n	is	a	left	child	and	-1	otherwise
• Let	p	=	parent(n).		Use	this	value	of	p when	you	recurse.
• If	balance	of	n	would	be	-2	(i.e.	balance(n)	+	diff	==	-2)		

– [Perform	the	check	for	the	mirror	case	where	balance(n)	+	diff	==	+2,	flipping	left/right	and	-1/+1]

– Let	c	=	left(n),	the	taller	of	the	children
– If	balance(c)	==	-1	or	0			(zig-zig	case)

• rotateRight(n)
• if	balance(c)	==	-1	then	balance(n)	=	balance(c)	=	0,	removeFix(p,	ndiff)
• if	balance(c)	==	0	then	balance(n)	=	-1,	balance(c)	=	+1,	done!	

– else	if	balance(c)	==	1		(zig-zag	case)
• rotateLeft(c)	then	rotateRight(n)
• Let	g	=	right(c)
• If	balance(g)	==	+1	then	balance(n)	=	0,	balance(c)	=	-1,	balance(g)	=	0
• If	balance(g)	==	0	then	balance(n)	=	balance(c)	=	0,	balance(g)	=	0
• If	balance(g)	==	-1	then	balance(n)	=	+1,	balance(c)	=	0,	balance(g)	=	0
• removeFix(parent(p),	ndiff);

• else	if	balance(n)	==	0	then	balance(n)	+=	diff,	done!
• else	balance(n)	=	0,	removeFix(p,	ndiff)

25

2-3-4	TREES
An	example	of	B-Trees

26

Definition
• 2-3-4	trees	are	very	much	like	2-3	trees	but	

form	the	basis	of	a	balanced,	binary tree	
representation	called	Red-Black	(RB)	trees	
which	are	commonly	used	[used	in	C++	STL	
map	&	set]
– We	study	them	mainly	to	ease	understanding	of	

RB	trees

• 2-3-4	Tree	is	a	tree	where
– Non-leaf	nodes	have	1	value	&	2	children	or		2	

values	&	3	children	or	3	values	&	4	children
– All	leaves	are	at	the	same	level

• Like	2-3	trees,	2-3-4	trees	are	always	full	
and	thus	have	an	upper	bound	on	their	
height	of	log2(n)

7 21 2 4

1
a 2 Node

2 4
a 3 Node

a valid 2-3-4 tree

5 10 20
a 4 Node

5 10 20

13

27

2-3-4	Search	Trees
• Similar	properties	as	a	2-3	
Search	Tree

• 4	Node:
– Left	subtree nodes	are	<	l
– Middle-left	subtree	>	l and	<	m
– Middle-right	subtree	>	m and	<	r
– Right	subtree nodes	are	>	r

m
a 2 Node

l r
a 3 Node

<
m

>
m

<
l

>
r

> l
&&
< r

a 4 Node

<
l

>
r

> l
&&
< m

l m r

> m
&&
< r

28

2-3-4	Insertion	Algorithm
• Key:		Rather	than	search	down	the	tree	and	then	possibly	promote	and	break	

up	4-nodes	on	the	way	back	up,	split	4	nodes	on	the	way	down
• To	insert	a	value,	

– 1.	If	node	is	a	4-node
• Split	the	3	values	into	a	left	2-node,	a	right	2-node,	and	promote	the	middle	element	to	

the	parent	of	the	node	(which	definitely	has	room)	attaching	children	appropriately
• Continue	on	to	next	node	in	search	order	

– 2a.	If	node	is	a	leaf,	insert	the	value	
– 2b.	Else	continue	on	to	the	next	node	in	search	tree	order

• Insert	60,	20,	10,	30,	25,	50,	80

60

20

10 60

20

10 30 60

Empty Add 60 Add 20

20 60

Add 10

Key:		4-nodes	get	split	
as	you	walk	down	

thus,	a	leaf	will	always	
have	room	for	a	value	

10 20 60

Add 30

29

RED	BLACK	TREES
"Balanced"	Binary	Search	Trees

30

Red	Black	Trees
• A	red-black	tree	is	a	binary	search	tree

– Only	2	nodes	(no	3- or	4-nodes)
– Can	be	built	from	a	2-3-4	tree	directly	by	converting	each	
3- and	4- nodes	to	multiple	2-nodes

• All	2-nodes	means	no	wasted	storage	overheads	
• Yields	a	"balanced"	BST
• "Balanced"	means	that	the	height	of	an	RB-Tree	is	
at	MOST	twice the	height	of	a	2-3-4	tree
– Recall,	height	of	2-3-4	tree	had	an	upper	bound	of	log2(n)
– Thus	height	or	an	RB-Tree	is	bounded	by	2*log2n	which	is	
still	O(log2(n))

31

Red	Black	and	2-3-4	Tree	Correspondence
• Every	2-,	3-,	and	4-node	can	be	converted	to…

– At	least	1	black	node	and	1	or	2	red	children	of	the	black	node
– Red	nodes	are	always	ones	that	would	join	with	their	parent	to	become	a	3- or	

4-node	in	a	2-3-4	tree

s m l
a 4 Node m

ls

a b c d

S = Small
M = Median
L = Large

s l
a 3 Node

l

s

a b

c

s

a

b c

lor

m
a 2-node

m

32

Red-Black	Tree	Properties
• Valid	RB-Trees	maintain	the	invariants	that…
• 1.	No	path	from	root	to	leaf	has	two	consecutive	red	nodes	(i.e.	a	

parent	and	its	child	cannot	both	be	red)
– Since	red	nodes	are	just	the	extra	values	of	a	3- or	4-node	from	2-3-4	trees	

you	can't	have	2	consecutive	red	nodes

• 2.	Every	path	from	leaf	to	root	has	the	same	number	of	black	
nodes
– Recall,	2-3-4	trees	are	full	(same	height	from	leaf	to	root	for	all	paths)
– Also	remember	each	2,	3-,	or	4- nodes	turns	into	a	black	node	plus	0,	1,	or	2	

red	node	children

• 3.	At	the	end	of	an	operation	the	root	should	always	be	black
• 4.	We	can	imagine	leaf	nodes	as	having	2	non-existent	(NULL)	black	

children	if	it	helps

33

Red-Black	Insertion
• Insertion	Algorithm:

– 1.	Insert	node	into	normal	BST	location	(at	a	leaf	
location)	and	color	it	RED

– 2a.	If	the	node's	parent	is	black	(i.e.	the	leaf	used	
to	be	a	2-node)	then	DONE	(i.e.	you	now	have	
what	was	a	3- or	4-node)

– 2b.	Else	perform	fixTree transformations	then	
repeat	step	2	on	the	parent	or	grandparent	
(whoever	is	red)

• fixTree involves	either
– recoloring or
– 1	or	2	rotations	and	recoloring

• Which	case	of	fixTree you	perform	depends	
on	the	color	of	the	new	node's	"aunt/uncle"

30

20

10

40
x

parent

grandparent

aunt/
uncle

Insert	10

34

fixTree Cases
G

P

N

U

a b

c

G

P

N

U

a b

c

P G UN UN P

G

G

P U

N

b c

a

P G UN UP N

G
G

P U

N

b c

a

R R

1.

2.

3.

Recolor

Recolor

Recolor
Root

Note:		For	insertion/removal	
algorithm	we	consider	non-
existent	leaf	nodes	as	black	
nodes

35

fixTree Cases
G

P

N

U

a b

c

P

N G
b

G

P U

N

b c

a

G

N U

P G

UN c

Right
rotate of

P,G

Uca
ba

N P G

Ucba

a

P c

b

N

P G

b Ua c

Right
rotate of

N,G
& Recolor

Left rotate
of N,P

P G

Ua N

cb

P N G

Ua b c

4.

5.

1 Rotate /
Recolor

2 Rotates /
Recolor

www.cse.ohio-state.edu/~gurari/course/cis680Ch11.html

36

HASH	TABLES

37

Hash	Tables
• A	hash	table	is	an	array	that	stores	key,value

pairs
– Usually	smaller	than	the	size	of	possible	set	

of	keys,	|S|
• USC	ID's	=	1010 options
• Pick	a	hash	table	of	some	size	much	smaller	

(how	many	students	do	we	have	at	any	
particular	time)

• The	table	is	coupled	with	a	function,	h(k),	
that	maps	keys	to	an	integer	in	the	range	
[0..tableSize-1]	(i.e.	[0	to	m-1])

• What	are	the	considerations…
– How	big	should	the	table	be?
– How	to	select	a	hash	function?
– What	if	two	keys	map	to	the	same	array	

location?	(i.e.	h(k1)	==	h(k2))
• Known	as	a	collision

0
1
2
3
4

tableSize-2
tableSize-1

…

key, value

key h(k)

Define
m = tableSize

n = # of used entries

38

Hash	Functions	First	Look
• Define	N =	#	of	entries	stored,	M =	Table/Array	Size
• A	hash	function	must	be	able	to	

– convert	the	key	data	type	to	an	integer
– That	integer	must	be	in	the	range	[0	to	M-1]	

• Keeping	h(k)	in	the	range	of	the	tableSize (M)
• Fairly	easy	method:		Use	modulo	arithmetic	(i.e.	h(k)	%	M)

• Usually	converting	key	data	type	to	an	integer	is	a	user-provided	
function	
– Akin	to	the	operator<()	needed	to	use	a	data	type	as	a	key	for	the	C++	map

• Example:	Strings
– Use	ASCII	codes	for	each	character	and	add	them	or	group	them
– "hello"	=>	'h'	=	104,	'e'=101,	'l'	=	108,	'l'	=	108,	'o'	=	111	=
– Example	function:	h("hello")	=	104	+	101	+	108	+	108	+	111	=	532	%	M

39

Hash	Function	Desirables
• A	"perfect	hash	function"	should	map	each	given	key	
to	a	unique	location	in	the	table
– Perfect	hash	functions	are	not	practically	attainable

• A	"good"	hash	function
– Is	easy	and	fast	to	compute
– Scatters	data	uniformly	throughout	the	hash	table

• P(h(k)	=	x)	=	1/M

40

Resolving	Collisions
• Example:

– A	hash	table	where	keys	are	phone	numbers:	(XXX)	YYY-ZZZZ
– Obviously	we	can't	have	a	table	with1010	entries
– Should	we	define	h(k)	as	the	upper	3	or	4	digits:		XXX	or	XXXY

• Meaning	a	table	of	1000	or	10,000	entries
– Define	h(k)	as	the	lowest	4-digits	of	the	phone	number:	ZZZZ

• Meaning	a	table	with	10,000	entries:	0000-9999
– Now	213-740-4321	and	323-681-4321	both	map	to	location	4321	in	the	

table

• Collisions	are	hard	to	avoid	so	we	have	to	find	a	way	to	deal	with	
them

• Methods
– Open	addressing	(probing)

• Linear,	quadratic,	double-hashing
– Buckets/Chaining	(Closed	Addressing)

41

Open	Addressing
• Open	addressing	means	an	item	

with	key,	k,	may	not	be	located	at	
h(k)

• Assume,	location	2	is	occupied	with	
another	item

• If	a	new	item	hashes	to	location	2,	
we	need	to	find	another	location	to	
store	it

• Linear	Probing
– Just	move	on	to	location	h(k)+1,	

h(k)+2,	h(k)+3,…

• Quadratic	Probing
– Check	location	h(k)+12,	h(k)+22,	

h(k)+32,	…

k, v0
1

k, v2
k, v3

4

tableSize-2
k,vtableSize-1

…

key, value
key

h(k)

42

Buckets/Chaining
• Rather	than	searching	for	a	

free	entry,	make	each	entry	in	
the	table	an	ARRAY	(bucket)	or	
LINKED	LIST	(chain)	of	
items/entries

• Buckets
– How	big	should	you	make	each	

array?		
– Too	much	wasted	space

• Chaining
– Each	entry	is	a	linked	List

Bucket 0
1
2
3
4

tableSize-1

k,v

0
1
2
3
4

tableSize-1
…

key, value

…
…
…
…
…
…
…

Array of Linked
Lists

43

Hash	Tables

• Suboperations
– Compute	h(k)	should	be	O(1)
– Array	access	of	table[h(k)]	=	O(1)

• In	a	hash	table,	what	is	the	expected	efficiency	
of	each	operation
– Find	=	O(1)
– Insert	=	O(1)
– Remove	=	O(1)

44

Summary

• Hash	tables	are	LARGE	arrays	with	a	function	
that	attempts	to	compute	an	index	from	the	
key

• In	the	general	case,	chaining is	the	best	
collision	resolution	approach

• The	functions	should	spread	the	possible	keys	
evenly	over	the	table

45

BLOOM	FILTERS
An	imperfect	set…

46

Bloom	Filter	Explanation
• A	Bloom	filter	is…

– A	hash	table	of	individual	bits	(Booleans:	T/F)
– A	set	of	hash	functions,	{h1(k),	h2(k),	…	hs(k)}

• Insert()
– Apply	each	hi(k)	to	the	key
– Set	a[hi(k)]	=	True

• Contains()
– Apply	each	hi(k)	to	the	key
– Return	True	if	all a[hi(k)]	=	True
– Return	False	otherwise
– In	other	words,	answer	is	"Maybe"	or	"No"

• May	produce	"false	positives"
• May	NOT	produce	"false	negatives"

• We	will	ignore	removal	for	now

0 0 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

0
9

0
10

insert("Tommy")

h1(k) h2(k) h3(k)

0 1 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

1
9

0
10

insert("Jill")

h1(k) h2(k) h3(k)

0 1 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

1
9

0
10

contains("John")

h1(k) h2(k) h3(k)

a

a

a

47

Sizing	Analysis
• Can	also	use	this	analysis	to	answer	or	a	more	"useful"	

question…
• …To	achieve	a	desired	probability	of	false	positive,	what	

should	the	table	size	be	to	accommodate	n	entries?
– Example:	I	want	a	probability	of	p=1/1000	for	false	positives	when	I	

store	n=100	elements
– Solve	2-m*ln(2)/n <	p

• Flip	to	2m*ln(2)/n ≥	1/p
• Take	log	of	both	sides	and	solve	for	m
• m	≥ [n*ln(1/p)]	/	ln(2)2	 ≈	2n*ln(1/p) because	ln(2)2 =	0.48	≈	½

– So	for	p=.001	we	would	need	a	table	of	m=14*n	since	ln(1000)	≈	7
• For	100	entries,	we'd	need	1400	bits	in	our	Bloom	filter

– For	p	=	.01	(1%	false	positives)	need	m=9.2*n	(9.2	bits	per	key)
– Recall:	Optimal	#	of	hash	functions,	j	=	ln(2)	/	α

• So	for	p=.01	and	α	=	1/(9.2)	would	yield	j	≈	7	hash	functions		

48

ITERATORS

49

Building	Our	First	Iterator
• Let's	add	an	iterator	to	our	Linked	

List	class
– Will	be	an	object/class	that	holds	some	

data	that	allows	us	to	get	an	item	in	our	
list	and	move	to	the	next	item

– How	do	you	iterate	over	a	linked	list	
normally:

• Item<T>*	temp	=	head;
• While(temp)	temp	=	temp->next;

– So	my	iterator	object	really	just	needs	to	
model	(contain)	that	'temp'	pointer

• Iterator	needs	following	operators:
– *
– ->
– ++
– ==	/	!=	
– <	??	

3 0x1c0 9 0x3e0

0x148

head

0x148 0x1c0

5 NULL

0x3e0

iterator

iterator

It=head

iterator
It = it->next
It = it->next

Mylist.begin() Mylist.end()

template <typename T>
struct Item {

T val;
Item<T>* next;

};

template <typename T>
class LList {
public:

LList(); // Constructor
~LList(); // Destructor

private:
Item<T>* head_;

};

50

Friends	and	Private	Constructors
• Let's	only	have	the	iterator	class	

grant	access	to	its	"trusted"	friend:		
Llist

• Now	LList<T>	can	access	iterators	
private	data	and	member	
functions

• And	we	can	add	a	private	
constructor	that	only	'iterator'	and	
'LList<T>'	can	use

– This	prevents	outsiders	from	creating	
iterators	that	point	to	what	they	
choose

• Now	begin()	and	end	can	create	
iterators	via	the	private	
constructor	&	return	them

template<typename T>
class LList
{ public:
LList() { head_ = NULL; }

class iterator {
private:
Item<T>* curr_;
iterator(Item<T>* init) : curr_(init) {}

public:
friend class LList<T>;
iterator(Item<T>* init);
iterator& operator++() ;
iterator operator++(int);
T& operator*();
T* operator->();
bool operator!=(const iterator & other);
bool operator==(const iterator & other);

};
iterator begin() { iterator it(head_);

return it; }
iterator end() { iterator it(NULL);

return it; }
private:
Item<T>* head_;
int size_;

};

51

Kinds	of	Iterators
• This	leads	us	to	categorize	iterators	based	on	their	capabilities	

(of	the	underlying	data	organization)
• Access	type

– Input	iterators:	Can	only	READ	the	value	be	pointed	to
– Output	iterators:		Can	only	WRITE	the	value	be	pointed	to

• Movement/direction	capabilities
– Forward	Iterator:		Can	only	increment	(go	forward)

• ++it
– Bidirectional	Iterators:		Can	go	in	either	direction

• ++it	or	--it
– Random	Access	Iterators:		Can	jump	beyond	just	next	or	previous

• it	+	4			or			it	– 2

• Which	movement/direction	capabilities	can	our	
LList<T>::iterator	naturally	support

52

TRIES	
Prefix	Trees

53

Tries
• Assuming	unique	keys,	can	we	still	

achieve	O(m)	search	but	not	have	
collisions?
– O(m)	means	the	time	to	compare	is	

independent of	how	many	keys	
(i.e.	n)	are	being	stored	and	only	depends	
on	the	length	of	the	key

• Trie(s)	(often	pronounced	"try"	or	
"tries")	allow	O(m)	retrieval
– Sometimes	referred	to	as	a	radix	tree	or	

prefix	tree

• Consider	a	trie for	the	keys
– "HE",	"HEAP",	"HEAR",	"HELP",	"ILL",	"IN"

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

54

Tries
• Rather	than	each	node	storing	a	full	key	

value,	each	node	represents	a	prefix	of	
the	key

• Highlighted	nodes	indicate	terminal	
locations
– For	a	map	we	could	store	the	associated	

value	of	the	key	at	that	terminal	location

• Notice	we	"share"	paths	for	keys	that	
have	a	common	prefix

• To	search	for	a	key,	start	at	the	root	
consuming	one	unit	(bit,	char,	etc.)	of	the	
key	at	a	time
– If	you	end	at	a	terminal	node,	SUCCESS
– If	you	end	at	a	non-terminal	node,	FAILURE

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

55

Tries
• To	search	for	a	key,	start	at	the	root	

consuming	one	unit	(bit,	char,	etc.)	of	the	
key	at	a	time
– If	you	end	at	a	terminal	node,	SUCCESS
– If	you	end	at	a	non-terminal	node,	FAILURE

• Examples:
– Search	for	"He"
– Search	for	"Help"
– Search	for	"Head"

• Search	takes	O(m)	where	m	=	length	of	
key
– Notice	this	is	the	same	as	a	hash	table

-

H I

E

A

RP

L

P

L N

L

H I

E

A L

P R P

L

L N

A "value" type
could be stored for
each non-terminal

node

56

Structure	of	Trie Nodes
• What	do	we	need	to	store	in	each	

node?
• Depends	on	how	"dense"	or	

"sparse"	the	tree	is?
• Dense	(most	characters	used)	or	

small	size	of	alphabet	of	possible	key	
characters
– Array	of	child	pointers
– One	for	each	possible	character	in	the	

alphabet

• Sparse
– (Linked)	List	of	children
– Node	needs	to	store	______

V*

template < class V >
struct TrieNode{

V* value; // NULL if non-terminal
TrieNode<V>* children[26];

};

template < class V >
struct TrieNode{

char key;
V* value;
TrieNode<V>* next;
TrieNode<V>* children;

};

a zb …

h r

c
f

s

c f

r

s

h

57

Search
• Search	consumes	one	

character	at	a	time	until	
– The	end	of	the	search	key	

• If	value	pointer	exists,	then	
the	key	is	present	in	the	map

– Or	no	child	pointer	exists		in	
the	TrieNode

• Insert
– Search	until	key	is	consumed	

but	trie path	already	exists
• Set	v	pointer	to	value

– Search	until	trie path	is	NULL,	
extend	path	adding	new	
TrieNodes and	then	add	value	
at	terminal

V* search(char* k, TrieNode<V>* node)
{

while(*k != '\0' && node != NULL){
node = node->children[*k – 'a'];
k++;

}
if(node){

return node->v;
}

}

void insert(char* k, Value& v)
{

TrieNode<V>* node = root;
while(*k != '\0' && node != NULL){

node = node->children[*k – 'a']; k++;
}
if(node){

node->v = new Value(v);
}
else {

// create new nodes in trie
// to extend path
// updating root if trie is empty

}
}

58

SPLAY	TREES

59

Splay	Tree	Intro
• Another	map/set	implementation	(storing	keys	or	key/value	pairs)

– Insert,	Remove,	Find

• Recall…To	do	m inserts/finds/removes	on	an	RBTree w/	n
elements	would	cost?
– O(m*log(n))

• Splay	trees	have	a	worst	case	find,	insert,	delete	time	of…
– O(n)

• However,	they	guarantee	that	if	you	do	m operations	on	a	splay	
tree	with	n elements	that	the	total	("amortized"…uh-oh)	time	is
– O(m*log(n))

• They	have	a	further	benefit	that	recently	accessed	elements	will	
be	near	the	top	of	the	tree	
– In	fact,	the	most	recently	accessed	item	is	always	at	the	top	of	the	tree

60

Splay	Operation

• Splay	means	"spread"
• As	you	search	for	an	item	or	after	
you	insert	an	item	we	will	perform	a	
series	of	splay	operations

• These	operations	will	cause	the	
desired	node	to	always	end	up	at	the	
top	of	the	tree
– A	desirable	side-effect	is	that	accessing	
a	key	multiple	times	within	a	short	time	
window	will	yield	fast	searches	because	
it	will	be	near	the	top

– See	next	slide	on	principle	of	locality

R

T

T

If we search for or
insert T…

…T will end up as the
root node with the old
root in the top level or

two

R

61

Splay	Cases
G

P

X

a b

c

G

P

X

b c

a

G

P

X

b c

a

1.

2.

3.
Zig-Zig

d R

X

b

a

X

P

G

c d

b

a

c

R

cX

a b
Right rotate of X,R

d

d

1

2 X

P G

a b c d

X

G P

a b c d

1

2

Zig-Zag

Left rotate of X,R

Root/Zig Case
(Single Rotation)

62

Splay	Tree	Supported	Operations
• Insert(x)

– Normal	BST	insert,	then	splay	x
• Find(x)

– Attempt	normal	BST	find(x)	and	splay	last	node	visited
• If	x	is	in	the	tree,	then	we	splay	x
• If	x	is	not	in	the	tree	we	splay	the	leaf	node	where	our	search	ended

• Remove(x)
– Find(x)	splaying	it	to	the	top,	then	overwrite	its	value	with	is		

successor/predecessor,	deleting	the	successor/predecessor	node

63

Summary

• Splay	trees	don't	enforce	balance	but	are	self-
adjusting	to	attempt	yield	a	balanced	tree

• Splay	trees	provide	efficient	amortized	time	
operations	
– A	single	operation	may	take	O(n)
– m	operations	on	tree	with	n	elements	=>	O(m(log	n))

• Uses	rotations	to	attempt	balance
• Provides	fast	access	to	recently	used	keys

64

Online	Tools	for	Trees
• http://www.cs.usfca.edu/~galles/visualization/AVLtree.html
• http://www.cs.usfca.edu/~galles/visualization/BTree.html
• http://www.cs.usfca.edu/~galles/visualization/RedBlack.html
• http://www.cs.usfca.edu/~galles/visualization/SplayTree.html

