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FINAL	REVIEW

It	is	strongly	recommended	to	be	aware	of	the	runtime	
(or	expected	runtime)	of	insert/remove/search

for	mostly	data	structures	and	algorithms
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HEAPS
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Binary	Tree	Review
• Full	binary	tree:	Binary	tree,	T,	where

– If	height	h>0	and	both	subtrees are	full	binary	trees	
of	height,	h-1

– If	height	h==0,	then	it	is	full	by	definition
– (Tree	where	all	leaves	are	at	level	h	and	all	other	

nodes	have	2	children)
• Complete	binary	tree

– Tree	where	levels	0	to	h-1	are	full	and	level	h	is	filled	
from	left	to	right

• Balanced	binary	tree
– Tree	where	subtrees from	any	node	differ	in	height	by	

at	most	1

Full

Complete, but not full

Full

Complete
DAPS, 6th Ed. Figure 15-8
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Heap	Data	Structure
• Provides	an	efficient	implementation	for	a	priority	queue
• Can	think	of	heap	as	a	complete binary	tree	that	maintains	the	

heap	property:
– Heap	Property:	Every	parent	is	less-than	(if	min-heap)	or	greater-than	(if	max-

heap)	both children
– But	no	ordering	property	between	children

• Minimum/Maximum	value	is	always	the	top	element

Min-Heap
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Heap	Operations
• Push:	Add	a	new	item	to	the	
heap	and	modify	heap	as	
necessary	

• Pop:	Remove	min/max item	
and	modify	heap	as	
necessary

• Top:	Returns	min/max
• Since	heaps	are	complete	
binary	trees	we	can	use	an	
array/vector	as	the	
container

template <typename T>
class MinHeap
{ 
public:

MinHeap(int init_capacity);
~MinHeap()
void push(const T& item);
T& top();
void pop();
int size() const;
bool empty() const;

private:
void heapify(int idx);
vector<T> items_;

}
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Array/Vector	Storage	for	Heap
• Recall:	Full	binary	tree (i.e.	only	the	lowest-level	contains	empty	locations	

and	items	added	left	to	right)	can	be	modeled	as	an array (let’s	say	it	
starts	at	index	1)	where:
– Parent(i)	=	i/2
– Left_child(p)	=	2*p
– Right_child(p)	=	2*p	+	1

7
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19 35 14 10

28 39 36 43 16 17

em 7 18 9 19

0 1 2 3 4

35 14 10 28 39

5 6 7 8 9

36 43 16 17

10 11 12 13

parent(5) = 5/2 = 2
Left_child(5) = 2*5 = 10

Right_child(5) = 2*5+1 = 11

1

2 3

4 5 6 7

8 9 10 11 12 13 14



8

DEPTH	FIRST	SEARCH
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Depth	First	Search
• Explores	ALL	children	

before	completing	a	
parent

– Note:	BFS	completes	a	parent	
before	ANY	children

• For	DFS	let	us	assign:
– A	start	time	when	the	node	is	first	

found
– A	finish	time	when	a	node	is	

completed

• If	we	look	at	our	nodes	in	
reverse	order	of	finish	time	(i.e.	
last	one	to	finish	back	to	first	
one	to	finish)	we	arrive	at	a…

– Topological	ordering!!!
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Reverse Finish Time Order
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DFS	Algorithm
• Visit	a	node

– Mark	as	visited	(started)
– For	each	visited	neighbor,	visit	it	

and	perform	DFS	on	all	of	their	
children

– Only	then,	mark	as	finished

• DFS	is	recursive!!
• If	cycles	in	the	graph,	ensure	we	

don’t	get	caught	visiting	
neighbors	endlessly
– Color	them	as	we	go
– White	=	unvisited,	
– Gray	=	visited	but	not	finished
– Black	=	finished

DFS-Visit (G, u)
1 u.color = GRAY
2 for each vertex v in Adj(u) do
3      if v.color == WHITE then
4          DFS-Visit (G, v)
5    u.color = BLACK
6    finish_list.append(u)

DFS-All (G)
1  for each vertex u
2    u.color = WHITE
3  finish_list = empty_list
4  for each vertex u do
5     if u.color == WHITE then
6 DFS-Visit (G, u, finish_list)
7  return finish_list
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BINARY	SEARCH	TREES
Properties,	Insertion	and	Removal
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Binary	Search	Tree
• Binary	search	tree	=	binary	tree	where	all	nodes	meet	the	

property	that:
– All	values	of	nodes	in	left	subtree	are	less-than	or	equal	than	the	

parent’s	value
– All	values	of	nodes	in	right	subtree	are	greater-than	or	equal	than	the	

parent’s	value

25

4718

7 20 32 56

If we wanted to print the values 
in sorted order would you use an 
pre-order, in-order, or post-order 

traversal?



13

Successors	&	Predecessors
• Let's	take	a	quick	tangent	that	will	help	us	understand	how	to	

do	BST	Removal
• Given	a	node	in	a	BST

– Its	predecessor	is	defined	as	the	next	smallest	value	in	the	tree
– Its	successor	is	defined	as	the	next	biggest	value	in	the	tree

• Where	would	you	expect	to	find	a	node's	successor?
• Where	would	find	a	node's	predecessor?

m
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Predecessors
• If	left	child	exists,	predecessor	is	the	
right	most	node	of	the	left	subtree

• Else	walk	up	the	ancestor	chain	until	
you	traverse	the	first	right	child	
pointer	(find	the	first	node	who	is	a	
right	child	of	his	parent…that	parent	is	
the	predecessor)
– If	you	get	to	the	root	w/o	finding	a	node	
who	is	a	right	child,	there	is	no	
predecessor

50
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25

20
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Pred(50) = 30

50
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60

Pred(25)=20
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Successors
• If	right	child	exists,	successor	is	the	
left	most	node	of	the	right	subtree

• Else	walk	up	the	ancestor	chain	until	
you	traverse	the	first	left	child	pointer	
(find	the	first	node	who	is	a	left	child	
of	his	parent…that	parent	is	the	
successor)
– If	you	get	to	the	root	w/o	finding	a	node	
who	is	a	left	child,	there	is	no	successor
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BST	Removal
• To	remove	a	value	from	a	BST…

– First	find	the	value	to	remove	by	walking	the	tree
– If	the	value	is	in	a	leaf	node,	simply	remove	that	leaf	node
– If	the	value	is	in	a	non-leaf	node,	swap	the	value	with	its	in-order	

successor	or	predecessor	and	then	remove	the	value
• A	non-leaf	node's	successor	or	predecessor	is	guaranteed	to	be	a	leaf	node	
(which	we	can	remove)	or	have	1	child	which	can	be	promoted

• We	can	maintain	the	BST	properties	by	putting	a	value's	successor	or	
predecessor	in	its	place
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AVL	TREES
Self-balancing	tree	proposed	by	Adelson-Velsky and	Landis
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AVL	Trees
• A	binary	search	tree	where	the	height	difference	between	left	and	right	subtrees	

of	a	node	is	at	most	1
– Binary	Search	Tree	(BST):	Left	subtree	keys	are	less	than	the	root	and	right	subtree	keys	

are	greater
• Two	implementations:

– Height:		Just	store	the	height	of	the	tree	rooted	at	that	node
– Balance:		Define	b(n)	as	the	balance	of	a	node	=	(Right	– Left)	Subtree	Height

• Legal	values	are	-1,	0,	1
• Balances	require	at	most	2-bits	if	we	are	trying	to	save	memory.	
• Let's	use	balance	for	this	lecture.

20
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121 25050
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4

3 2

122 25152

31 81 151

AVL Tree storing Heights AVL Tree storing balances

Balance 
factors
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To	Zig	or	Zag
• The	rotation(s)	required	to	

balance	a	tree	is/are	
dependent	on	the	
grandparent,	parent,	child	
relationships

• We	can	refer	to	these	as	
the	zig-zig case	and	zig-zag	
case

• Zig-zig requires	1	rotation
• Zig-zag requires	2	

rotations	(first	converts	to	
zig-zig)
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[One left/right rotation of g]
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Insert(n)

• If	empty	tree	=>	set	as	root,	b(n)	=	0,	done!
• Insert	n	(by	walking	the	tree	to	a	leaf,	p,	and	
inserting	the	new	node	as	its	child),	set	
balance	to	0,	and	look	at	its	parent,	p
– If	b(p)	=	-1,	then	b(p)	=	0.	Done!
– If	b(p)	=	+1,	then	b(p)	=	0.	Done!
– If	b(p)	=	0,	then	update	b(p)	and	call	insert-fix(p,	n)

12
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0

0

121

200100

12-1

200100
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Insert-fix(p,	n)
• Precondition:		p	and	n	are	balanced:	{+1,0,-1}
• Postcondition:	g,	p,	and	n	are	balanced:	{+1,0,-1}
• If	p	is	null	or	parent(p)	is	null,	return
• Let	g	=	parent(p)
• Assume	p	is	left	child	of	g		[For	right	child	swap	left/right,	+/-]

– g.balance +=	-1
– if	g.balance ==	0,	return
– if	g.balance ==	-1,	insertFix(g,	p)
– If	g.balance ==	-2

• If	zig-zig	then	rotateRight(g);	p.balance =	g.balance =	0
• If	zig-zag	then	rotateLeft(p);	rotateRight(g);	

– if	n.balance ==	-1 then	p.balance =	0;	g.balance(+1);	n.balance =	0;
– if	n.balance ==	0	then	p.balance =	0;	g.balance(0);	n.balance =	0;
– if	n.balance ==	+1 then	p.balance =	-1;	g.balance(0);	n.balance =	0;

Note:	If	you	
perform	a	

rotation,	you	will	
NOT	need	to	

recurse.	You	are	
done!
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Remove	Operation

• Remove	operations	may	also	require	
rebalancing	via	rotations

• The	key	idea	is	to	update	the	balance	of	the	
nodes	on	the	ancestor	pathway

• If	an	ancestor	gets	out	of	balance	then	
perform	rotations	to	rebalance
– Unlike	insert,	performing	rotations	does	not	mean	
you	are	done,	but	need	to	continue

• There	are	slightly	more	cases	to	worry	about	
but	not	too	many	more
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Remove
• Let	n	=	node	to	remove	(perform	BST	find)	and	p	=	parent(n)
• If	n	has	2	children,	swap	positions	with	in-order	successor	and	

perform	the	next	step
– Now	n	has	0	or	1	child	guaranteed

• If	n	is	not	in	the	root	position	determine	its	relationship	with	
its	parent
– If	n	is	a	left	child,	let	diff	=	+1
– if	n	is	a	right	child,	let	diff	=	-1

• Delete	n	and	update	tree,	including	the	root	if	necessary
• removeFix(p,	diff);
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RemoveFix(n,	diff)
• If	n	is	null,	return
• Let	ndiff =	+1	if	n	is	a	left	child	and	-1	otherwise
• Let	p	=	parent(n).		Use	this	value	of	p when	you	recurse.
• If	balance	of	n	would	be	-2	(i.e.	balance(n)	+	diff	==	-2)		

– [Perform	the	check	for	the	mirror	case	where	balance(n)	+	diff	==	+2,	flipping	left/right	and	-1/+1]

– Let	c	=	left(n),	the	taller	of	the	children
– If	balance(c)	==	-1	or	0			(zig-zig	case)

• rotateRight(n)
• if	balance(c)	==	-1	then	balance(n)	=	balance(c)	=	0,	removeFix(p,	ndiff)
• if	balance(c)	==	0	then	balance(n)	=	-1,	balance(c)	=	+1,	done!	

– else	if	balance(c)	==	1		(zig-zag	case)
• rotateLeft(c)	then	rotateRight(n)
• Let	g	=	right(c)
• If	balance(g)	==	+1	then	balance(n)	=	0,	balance(c)	=	-1,	balance(g)	=	0
• If	balance(g)	==	0	then	balance(n)	=	balance(c)	=	0,	balance(g)	=	0
• If	balance(g)	==	-1	then	balance(n)	=	+1,	balance(c)	=	0,	balance(g)	=	0
• removeFix(parent(p),	ndiff);

• else	if	balance(n)	==	0	then	balance(n)	+=	diff,	done!
• else	balance(n)	=	0,	removeFix(p,	ndiff)
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2-3-4	TREES
An	example	of	B-Trees
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Definition
• 2-3-4	trees	are	very	much	like	2-3	trees	but	

form	the	basis	of	a	balanced,	binary tree	
representation	called	Red-Black	(RB)	trees	
which	are	commonly	used	[used	in	C++	STL	
map	&	set]
– We	study	them	mainly	to	ease	understanding	of	

RB	trees

• 2-3-4	Tree	is	a	tree	where
– Non-leaf	nodes	have	1	value	&	2	children	or		2	

values	&	3	children	or	3	values	&	4	children
– All	leaves	are	at	the	same	level

• Like	2-3	trees,	2-3-4	trees	are	always	full	
and	thus	have	an	upper	bound	on	their	
height	of	log2(n)

7 21 2    4

1
a 2 Node

2    4
a 3 Node

a valid 2-3-4 tree

5  10 20
a 4 Node

5  10 20

13
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2-3-4	Search	Trees
• Similar	properties	as	a	2-3	
Search	Tree

• 4	Node:
– Left	subtree nodes	are	<	l
– Middle-left	subtree	>	l and	<	m
– Middle-right	subtree	>	m and	<	r
– Right	subtree nodes	are	>	r

m
a 2 Node

l    r
a 3 Node

<
m

>
m

<
l

>
r

> l 
&& 
< r

a 4 Node

<
l

>
r

> l 
&& 
< m

l  m r

> m 
&& 
< r
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2-3-4	Insertion	Algorithm
• Key:		Rather	than	search	down	the	tree	and	then	possibly	promote	and	break	

up	4-nodes	on	the	way	back	up,	split	4	nodes	on	the	way	down
• To	insert	a	value,	

– 1.	If	node	is	a	4-node
• Split	the	3	values	into	a	left	2-node,	a	right	2-node,	and	promote	the	middle	element	to	

the	parent	of	the	node	(which	definitely	has	room)	attaching	children	appropriately
• Continue	on	to	next	node	in	search	order	

– 2a.	If	node	is	a	leaf,	insert	the	value	
– 2b.	Else	continue	on	to	the	next	node	in	search	tree	order

• Insert	60,	20,	10,	30,	25,	50,	80

60 

20 

10 60 

20 

10 30  60

Empty Add 60 Add 20

20  60

Add 10

Key:		4-nodes	get	split	
as	you	walk	down	

thus,	a	leaf	will	always	
have	room	for	a	value	

10  20 60

Add 30
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RED	BLACK	TREES
"Balanced"	Binary	Search	Trees
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Red	Black	Trees
• A	red-black	tree	is	a	binary	search	tree

– Only	2	nodes	(no	3- or	4-nodes)
– Can	be	built	from	a	2-3-4	tree	directly	by	converting	each	
3- and	4- nodes	to	multiple	2-nodes

• All	2-nodes	means	no	wasted	storage	overheads	
• Yields	a	"balanced"	BST
• "Balanced"	means	that	the	height	of	an	RB-Tree	is	
at	MOST	twice the	height	of	a	2-3-4	tree
– Recall,	height	of	2-3-4	tree	had	an	upper	bound	of	log2(n)
– Thus	height	or	an	RB-Tree	is	bounded	by	2*log2n	which	is	
still	O(log2(n))
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Red	Black	and	2-3-4	Tree	Correspondence
• Every	2-,	3-,	and	4-node	can	be	converted	to…

– At	least	1	black	node	and	1	or	2	red	children	of	the	black	node
– Red	nodes	are	always	ones	that	would	join	with	their	parent	to	become	a	3- or	

4-node	in	a	2-3-4	tree

s  m l
a 4 Node m

ls

a b c d

S = Small
M = Median
L = Large

s    l
a 3 Node

l

s

a b

c

s

a

b c

lor

m
a 2-node

m
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Red-Black	Tree	Properties
• Valid	RB-Trees	maintain	the	invariants	that…
• 1.	No	path	from	root	to	leaf	has	two	consecutive	red	nodes	(i.e.	a	

parent	and	its	child	cannot	both	be	red)
– Since	red	nodes	are	just	the	extra	values	of	a	3- or	4-node	from	2-3-4	trees	

you	can't	have	2	consecutive	red	nodes

• 2.	Every	path	from	leaf	to	root	has	the	same	number	of	black	
nodes
– Recall,	2-3-4	trees	are	full	(same	height	from	leaf	to	root	for	all	paths)
– Also	remember	each	2,	3-,	or	4- nodes	turns	into	a	black	node	plus	0,	1,	or	2	

red	node	children

• 3.	At	the	end	of	an	operation	the	root	should	always	be	black
• 4.	We	can	imagine	leaf	nodes	as	having	2	non-existent	(NULL)	black	

children	if	it	helps
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Red-Black	Insertion
• Insertion	Algorithm:

– 1.	Insert	node	into	normal	BST	location	(at	a	leaf	
location)	and	color	it	RED

– 2a.	If	the	node's	parent	is	black	(i.e.	the	leaf	used	
to	be	a	2-node)	then	DONE	(i.e.	you	now	have	
what	was	a	3- or	4-node)

– 2b.	Else	perform	fixTree transformations	then	
repeat	step	2	on	the	parent	or	grandparent	
(whoever	is	red)

• fixTree involves	either
– recoloring or
– 1	or	2	rotations	and	recoloring

• Which	case	of	fixTree you	perform	depends	
on	the	color	of	the	new	node's	"aunt/uncle"

30

20

10

40
x

parent

grandparent

aunt/
uncle

Insert	10
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fixTree Cases
G

P

N

U

a b

c

G

P

N

U

a b

c

P  G  UN UN  P

G

G

P U

N

b c

a

P  G  UN UP  N

G
G

P U

N

b c

a

R R

1.

2.

3.

Recolor

Recolor

Recolor 
Root

Note:		For	insertion/removal	
algorithm	we	consider	non-
existent	leaf	nodes	as	black	
nodes
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fixTree Cases
G

P

N

U

a b

c

P

N G
b

G

P U

N

b c

a

G

N U

P  G

UN c

Right 
rotate of 

P,G

Uca
ba

N  P  G

Ucba

a

P c

b

N

P G

b Ua c

Right 
rotate of 

N,G
& Recolor

Left rotate 
of N,P

P  G

Ua N

cb

P  N  G

Ua b c

4.

5.

1 Rotate / 
Recolor

2 Rotates / 
Recolor

www.cse.ohio-state.edu/~gurari/course/cis680Ch11.html
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HASH	TABLES
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Hash	Tables
• A	hash	table	is	an	array	that	stores	key,value

pairs
– Usually	smaller	than	the	size	of	possible	set	

of	keys,	|S|
• USC	ID's	=	1010 options
• Pick	a	hash	table	of	some	size	much	smaller	

(how	many	students	do	we	have	at	any	
particular	time)

• The	table	is	coupled	with	a	function,	h(k),	
that	maps	keys	to	an	integer	in	the	range	
[0..tableSize-1]	(i.e.	[0	to	m-1])

• What	are	the	considerations…
– How	big	should	the	table	be?
– How	to	select	a	hash	function?
– What	if	two	keys	map	to	the	same	array	

location?	(i.e.	h(k1)	==	h(k2)	)
• Known	as	a	collision

0
1
2
3
4

tableSize-2
tableSize-1

…

key, value

key h(k)

Define 
m = tableSize

n = # of used entries



38

Hash	Functions	First	Look
• Define	N =	#	of	entries	stored,	M =	Table/Array	Size
• A	hash	function	must	be	able	to	

– convert	the	key	data	type	to	an	integer
– That	integer	must	be	in	the	range	[0	to	M-1]	

• Keeping	h(k)	in	the	range	of	the	tableSize (M)
• Fairly	easy	method:		Use	modulo	arithmetic	(i.e.	h(k)	%	M)

• Usually	converting	key	data	type	to	an	integer	is	a	user-provided	
function	
– Akin	to	the	operator<()	needed	to	use	a	data	type	as	a	key	for	the	C++	map

• Example:	Strings
– Use	ASCII	codes	for	each	character	and	add	them	or	group	them
– "hello"	=>	'h'	=	104,	'e'=101,	'l'	=	108,	'l'	=	108,	'o'	=	111	=
– Example	function:	h("hello")	=	104	+	101	+	108	+	108	+	111	=	532	%	M
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Hash	Function	Desirables
• A	"perfect	hash	function"	should	map	each	given	key	
to	a	unique	location	in	the	table
– Perfect	hash	functions	are	not	practically	attainable

• A	"good"	hash	function
– Is	easy	and	fast	to	compute
– Scatters	data	uniformly	throughout	the	hash	table

• P(	h(k)	=	x	)	=	1/M
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Resolving	Collisions
• Example:

– A	hash	table	where	keys	are	phone	numbers:	(XXX)	YYY-ZZZZ
– Obviously	we	can't	have	a	table	with1010	entries
– Should	we	define	h(k)	as	the	upper	3	or	4	digits:		XXX	or	XXXY

• Meaning	a	table	of	1000	or	10,000	entries
– Define	h(k)	as	the	lowest	4-digits	of	the	phone	number:	ZZZZ

• Meaning	a	table	with	10,000	entries:	0000-9999
– Now	213-740-4321	and	323-681-4321	both	map	to	location	4321	in	the	

table

• Collisions	are	hard	to	avoid	so	we	have	to	find	a	way	to	deal	with	
them

• Methods
– Open	addressing	(probing)

• Linear,	quadratic,	double-hashing
– Buckets/Chaining	(Closed	Addressing)
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Open	Addressing
• Open	addressing	means	an	item	

with	key,	k,	may	not	be	located	at	
h(k)

• Assume,	location	2	is	occupied	with	
another	item

• If	a	new	item	hashes	to	location	2,	
we	need	to	find	another	location	to	
store	it

• Linear	Probing
– Just	move	on	to	location	h(k)+1,	

h(k)+2,	h(k)+3,…

• Quadratic	Probing
– Check	location	h(k)+12,	h(k)+22,	

h(k)+32,	…

k, v0
1

k, v2
k, v3

4

tableSize-2
k,vtableSize-1

…

key, value
key

h(k)
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Buckets/Chaining
• Rather	than	searching	for	a	

free	entry,	make	each	entry	in	
the	table	an	ARRAY	(bucket)	or	
LINKED	LIST	(chain)	of	
items/entries

• Buckets
– How	big	should	you	make	each	

array?		
– Too	much	wasted	space

• Chaining
– Each	entry	is	a	linked	List

Bucket 0
1
2
3
4

tableSize-1

k,v

0
1
2
3
4

tableSize-1
…

key, value

…
…
…
…
…
…
…

Array of Linked 
Lists
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Hash	Tables

• Suboperations
– Compute	h(k)	should	be	O(1)
– Array	access	of	table[h(k)]	=	O(1)

• In	a	hash	table,	what	is	the	expected	efficiency	
of	each	operation
– Find	=	O(1)
– Insert	=	O(1)
– Remove	=	O(1)
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Summary

• Hash	tables	are	LARGE	arrays	with	a	function	
that	attempts	to	compute	an	index	from	the	
key

• In	the	general	case,	chaining is	the	best	
collision	resolution	approach

• The	functions	should	spread	the	possible	keys	
evenly	over	the	table
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BLOOM	FILTERS
An	imperfect	set…
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Bloom	Filter	Explanation
• A	Bloom	filter	is…

– A	hash	table	of	individual	bits	(Booleans:	T/F)
– A	set	of	hash	functions,	{h1(k),	h2(k),	…	hs(k)}

• Insert()
– Apply	each	hi(k)	to	the	key
– Set	a[hi(k)]	=	True

• Contains()
– Apply	each	hi(k)	to	the	key
– Return	True	if	all a[hi(k)]	=	True
– Return	False	otherwise
– In	other	words,	answer	is	"Maybe"	or	"No"

• May	produce	"false	positives"
• May	NOT	produce	"false	negatives"

• We	will	ignore	removal	for	now

0 0 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

0
9

0
10

insert("Tommy")

h1(k) h2(k) h3(k)

0 1 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

1
9

0
10

insert("Jill")

h1(k) h2(k) h3(k)

0 1 0 1 1
0 1 2 3 4

0
5

1 0
6 7

0
8

1
9

0
10

contains("John")

h1(k) h2(k) h3(k)

a

a

a
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Sizing	Analysis
• Can	also	use	this	analysis	to	answer	or	a	more	"useful"	

question…
• …To	achieve	a	desired	probability	of	false	positive,	what	

should	the	table	size	be	to	accommodate	n	entries?
– Example:	I	want	a	probability	of	p=1/1000	for	false	positives	when	I	

store	n=100	elements
– Solve	2-m*ln(2)/n <	p

• Flip	to	2m*ln(2)/n ≥	1/p
• Take	log	of	both	sides	and	solve	for	m
• m	≥ [n*ln(1/p)	]	/	ln(2)2	 ≈	2n*ln(1/p) because	ln(2)2 =	0.48	≈	½

– So	for	p=.001	we	would	need	a	table	of	m=14*n	since	ln(1000)	≈	7
• For	100	entries,	we'd	need	1400	bits	in	our	Bloom	filter

– For	p	=	.01	(1%	false	positives)	need	m=9.2*n	(9.2	bits	per	key)
– Recall:	Optimal	#	of	hash	functions,	j	=	ln(2)	/	α

• So	for	p=.01	and	α	=	1/(9.2)	would	yield	j	≈	7	hash	functions		
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ITERATORS
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Building	Our	First	Iterator
• Let's	add	an	iterator	to	our	Linked	

List	class
– Will	be	an	object/class	that	holds	some	

data	that	allows	us	to	get	an	item	in	our	
list	and	move	to	the	next	item

– How	do	you	iterate	over	a	linked	list	
normally:

• Item<T>*	temp	=	head;
• While(temp)	temp	=	temp->next;

– So	my	iterator	object	really	just	needs	to	
model	(contain)	that	'temp'	pointer

• Iterator	needs	following	operators:
– *
– ->
– ++
– ==	/	!=	
– <	??	

3 0x1c0 9 0x3e0

0x148

head

0x148 0x1c0

5 NULL

0x3e0

iterator

iterator

It=head

iterator
It = it->next
It = it->next

Mylist.begin() Mylist.end()

template <typename T>
struct Item {

T val;
Item<T>* next;

};

template <typename T>
class LList {
public:

LList();  // Constructor
~LList();  // Destructor

private:
Item<T>* head_;

};
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Friends	and	Private	Constructors
• Let's	only	have	the	iterator	class	

grant	access	to	its	"trusted"	friend:		
Llist

• Now	LList<T>	can	access	iterators	
private	data	and	member	
functions

• And	we	can	add	a	private	
constructor	that	only	'iterator'	and	
'LList<T>'	can	use

– This	prevents	outsiders	from	creating	
iterators	that	point	to	what	they	
choose

• Now	begin()	and	end	can	create	
iterators	via	the	private	
constructor	&	return	them

template<typename T>
class LList
{ public:
LList() { head_ = NULL; }

class iterator {
private:
Item<T>* curr_;
iterator(Item<T>* init) : curr_(init) {}

public:
friend class LList<T>;
iterator(Item<T>* init);
iterator& operator++() ;
iterator operator++(int);
T& operator*();
T* operator->();
bool operator!=(const iterator & other);
bool operator==(const iterator & other);

};
iterator begin()  { iterator it(head_); 

return it;    }
iterator end()    { iterator it(NULL);

return it;    }
private:
Item<T>* head_;
int size_;

};
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Kinds	of	Iterators
• This	leads	us	to	categorize	iterators	based	on	their	capabilities	

(of	the	underlying	data	organization)
• Access	type

– Input	iterators:	Can	only	READ	the	value	be	pointed	to
– Output	iterators:		Can	only	WRITE	the	value	be	pointed	to

• Movement/direction	capabilities
– Forward	Iterator:		Can	only	increment	(go	forward)

• ++it
– Bidirectional	Iterators:		Can	go	in	either	direction

• ++it	or	--it
– Random	Access	Iterators:		Can	jump	beyond	just	next	or	previous

• it	+	4			or			it	– 2

• Which	movement/direction	capabilities	can	our	
LList<T>::iterator	naturally	support
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TRIES	
Prefix	Trees
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Tries
• Assuming	unique	keys,	can	we	still	

achieve	O(m)	search	but	not	have	
collisions?
– O(m)	means	the	time	to	compare	is	

independent of	how	many	keys	
(i.e.	n)	are	being	stored	and	only	depends	
on	the	length	of	the	key

• Trie(s)	(often	pronounced	"try"	or	
"tries")	allow	O(m)	retrieval
– Sometimes	referred	to	as	a	radix	tree	or	

prefix	tree

• Consider	a	trie for	the	keys
– "HE",	"HEAP",	"HEAR",	"HELP",	"ILL",	"IN"

-

H I

E

A
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L
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Tries
• Rather	than	each	node	storing	a	full	key	

value,	each	node	represents	a	prefix	of	
the	key

• Highlighted	nodes	indicate	terminal	
locations
– For	a	map	we	could	store	the	associated	

value	of	the	key	at	that	terminal	location

• Notice	we	"share"	paths	for	keys	that	
have	a	common	prefix

• To	search	for	a	key,	start	at	the	root	
consuming	one	unit	(bit,	char,	etc.)	of	the	
key	at	a	time
– If	you	end	at	a	terminal	node,	SUCCESS
– If	you	end	at	a	non-terminal	node,	FAILURE

-
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Tries
• To	search	for	a	key,	start	at	the	root	

consuming	one	unit	(bit,	char,	etc.)	of	the	
key	at	a	time
– If	you	end	at	a	terminal	node,	SUCCESS
– If	you	end	at	a	non-terminal	node,	FAILURE

• Examples:
– Search	for	"He"
– Search	for	"Help"
– Search	for	"Head"

• Search	takes	O(m)	where	m	=	length	of	
key
– Notice	this	is	the	same	as	a	hash	table

-
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A "value" type 
could be stored for 
each non-terminal 

node
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Structure	of	Trie Nodes
• What	do	we	need	to	store	in	each	

node?
• Depends	on	how	"dense"	or	

"sparse"	the	tree	is?
• Dense	(most	characters	used)	or	

small	size	of	alphabet	of	possible	key	
characters
– Array	of	child	pointers
– One	for	each	possible	character	in	the	

alphabet

• Sparse
– (Linked)	List	of	children
– Node	needs	to	store	______

V*

template < class V >
struct TrieNode{

V* value; // NULL if non-terminal
TrieNode<V>* children[26];

};

template < class V >
struct TrieNode{

char key;
V* value;
TrieNode<V>* next;
TrieNode<V>* children;

};

a zb …

h r

c
f

s

c f

r

s

h
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Search
• Search	consumes	one	

character	at	a	time	until	
– The	end	of	the	search	key	

• If	value	pointer	exists,	then	
the	key	is	present	in	the	map

– Or	no	child	pointer	exists		in	
the	TrieNode

• Insert
– Search	until	key	is	consumed	

but	trie path	already	exists
• Set	v	pointer	to	value

– Search	until	trie path	is	NULL,	
extend	path	adding	new	
TrieNodes and	then	add	value	
at	terminal

V* search(char* k, TrieNode<V>* node)
{

while(*k != '\0' && node != NULL){
node = node->children[*k – 'a'];
k++;

}
if(node){

return node->v;
}

}

void insert(char* k, Value& v)
{

TrieNode<V>* node = root;
while(*k != '\0' && node != NULL){

node = node->children[*k – 'a'];  k++;
}
if(node){

node->v = new Value(v);
}
else {

// create new nodes in trie
// to extend path 
// updating root if trie is empty

}
}
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SPLAY	TREES
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Splay	Tree	Intro
• Another	map/set	implementation	(storing	keys	or	key/value	pairs)

– Insert,	Remove,	Find

• Recall…To	do	m inserts/finds/removes	on	an	RBTree w/	n
elements	would	cost?
– O(m*log(n))

• Splay	trees	have	a	worst	case	find,	insert,	delete	time	of…
– O(n)

• However,	they	guarantee	that	if	you	do	m operations	on	a	splay	
tree	with	n elements	that	the	total	("amortized"…uh-oh)	time	is
– O(m*log(n))

• They	have	a	further	benefit	that	recently	accessed	elements	will	
be	near	the	top	of	the	tree	
– In	fact,	the	most	recently	accessed	item	is	always	at	the	top	of	the	tree
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Splay	Operation

• Splay	means	"spread"
• As	you	search	for	an	item	or	after	
you	insert	an	item	we	will	perform	a	
series	of	splay	operations

• These	operations	will	cause	the	
desired	node	to	always	end	up	at	the	
top	of	the	tree
– A	desirable	side-effect	is	that	accessing	
a	key	multiple	times	within	a	short	time	
window	will	yield	fast	searches	because	
it	will	be	near	the	top

– See	next	slide	on	principle	of	locality

R

T

T

If we search for or 
insert T…

…T will end up as the 
root node with the old 
root in the top level or 

two

R
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Splay	Cases
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Root/Zig Case
(Single Rotation)
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Splay	Tree	Supported	Operations
• Insert(x)

– Normal	BST	insert,	then	splay	x
• Find(x)

– Attempt	normal	BST	find(x)	and	splay	last	node	visited
• If	x	is	in	the	tree,	then	we	splay	x
• If	x	is	not	in	the	tree	we	splay	the	leaf	node	where	our	search	ended

• Remove(x)
– Find(x)	splaying	it	to	the	top,	then	overwrite	its	value	with	is		

successor/predecessor,	deleting	the	successor/predecessor	node
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Summary

• Splay	trees	don't	enforce	balance	but	are	self-
adjusting	to	attempt	yield	a	balanced	tree

• Splay	trees	provide	efficient	amortized	time	
operations	
– A	single	operation	may	take	O(n)
– m	operations	on	tree	with	n	elements	=>	O(m(log	n))

• Uses	rotations	to	attempt	balance
• Provides	fast	access	to	recently	used	keys
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Online	Tools	for	Trees
• http://www.cs.usfca.edu/~galles/visualization/AVLtree.html
• http://www.cs.usfca.edu/~galles/visualization/BTree.html
• http://www.cs.usfca.edu/~galles/visualization/RedBlack.html
• http://www.cs.usfca.edu/~galles/visualization/SplayTree.html


