

Agenda Endorsement System

Ankitha Premkumar
 ​Computer Science

University of Southern California
Los Angeles

apremkum@usc.edu

Prathibha Muralidharan
 ​Computer Science

University of Southern California
Los Angeles

prathibm@usc.edu

Sharath Ravishankar
 ​Computer Science

University of Southern California
Los Angeles

ravishas@usc.edu

Reshma Malla
 ​Computer Science

University of Southern California
Los Angeles

reshmama@usc.edu

ABSTRACT
Planning is a pivotal activity. Say a user has a list of
tasks to be completed, there are various ways in which
this can be accomplished. Here, a task could range
anywhere from going to a restaurant, shopping or
getting an errand done. There may be multiple options
available to the user but doing it in a timely fashion
and in a feasible manner is a challenge and solving
that challenge is the goal of the system. The yelp
dataset which contains a plethora of businesses is the
data source for the engine based on which a plan can
be proposed to a user, given his to-do list. A plan
involving a list of the appropriate businesses for each
of these activities is the output of the system.

1. INTRODUCTION

Volume is one of the 3V’s of big data. With a large
data set such as yelp’s, options to carry out a task are
far from limited - be it by location or by variety.
Suggesting a location among those choices is a tough
activity all-together. However the project utilises
already existing state of the art recommendation
libraries for prediction of ratings for each of the
businesses. The task intensifies when the choices are
suggested for a group of tasks. The optimality needs
to be considered in entirety for a list of activities. In
the market, there are several applications which cater
to provide recommendations for a particular task.
However in reality, there is more than one task to be
done and additional factors need to be considered

when done together. This forms the main objective of
the agenda endorsement system.

Initially the businesses are grouped according to the
activities that can be performed and preprocessed
which is fed to the engine. The ratings of the
businesses and the round trip distance of the overall
plan are the two main factors involved in suggesting
the plan for the agenda. The ratings component is
predicted from the existing recommendation system
library. By default the engine provides the plan with
the shortest round trip distance, plan with highest
rated businesses for each task and a plan which gives
equal preference to both. The project presently
focusses on these two factors but can be extrapolated
further to consider other features such as user profile,
friendship networks and their profiles.

For example, if the tasks that need to be done involve
going to a restaurant, shopping and visiting a clinic.
There are several businesses that a user can choose
from to perform all of these activities. The engine
proposed runs the standard recommendation
algorithm on each of the businesses and estimates the
user’s rating for these businesses. After selecting the
top businesses ordered by the predicted ratings, all
possible combinations are computed with the
respective businesses for the activities specified, each
of which form a plan. Further, among these list of
plans possible, three main plans are provided - 1.
Optimal Plan - A plan which gives equal preference to
ratings and round trip distance, 2. Shortest distance
plan - Plan with shortest round trip distance 3. Best

Rated Plan - Plan with the highest average rating of
the list of businesses suggested. The ratings for the
businesses are predicted using state of the art mllib
library. Moving forward, users can provide a weight
which indicates their preference for a best rated plan
versus a plan that compromises on rating but is
shorter in terms of distance.

2. DATASET

We use the dataset provided by Yelp as part of their
Dataset Challenge 2018 (Round 12) for training,
prediction models and testing. The dataset includes
data from about ​188,593 businesses, 5,996,996
reviews, 280,992 pictures​, ​10 metropolitan areas. The
dataset contains 6 files: business.json, review.json,
user.json, checkin.json, tip.json, photo.json.

In order to build the recommendation system, we use
business.json, review.json and user.json. Businesses
have several fields- business_id, business name,
latitude, longitude, stars, categories that are relevant
to our system. The categories field of a business may
contain tags that describe the business, for example,
“Thai”, “Desserts”, “Beverages”. In review.json, we
use user_id, business_id, stars fields to construct our
collaborative filtering model.

3. SETUP

3.1 Pre-Processing

Handling the large dataset in an efficient manner
entailed a set of pre-processing steps, which have all
been implemented as Python scripts. First, the three
data files namely, user.json, business.json and
review.json are initially converted to csv format from
the original json values using argparse, collections
and json libraries. Second, in order to reduce the size
of the data to be worked on, we restrict ourselves to
the metropolitan with the highest number of
businesses (Las Vegas - which has approximately
28K rows)(Depicted in Figure 3.1.1). Each of the
businesses is provided with a list of categories that
describe the business. These category terms are
extracted to get a reduced set of all the unique tags
across all businesses (2K category terms). This set is
then cast into a set of Umbrella Terms by manual
annotation. For example - the category terms Thai,
Chinese, Italian are now annotated as Restaurant.

Third, these umbrella terms are associated back with
the businesses by parsing the category terms provided
for each business. As a sub-step, redundant umbrella
terms, discrepancies in terminology or spelling errors
are eliminated while generating the annotated
businesses file. Next, the top four business category
umbrella terms are shortlisted along with their
subcategories, i.e., the category Restaurant also has
categories such as Restaurant-Coffee,
Restaurant-Beverages, Restaurant-Pubs etc. Using this
subset of umbrella terms, the businesses in Las Vegas
are further filtered out (~20k rows). Finally, a list of
users who have reviewed at least one of these
businesses is extracted. This also reduces the numbers
of users that need to be considered for the
recommendation system. The fields of interest from
the businesses csv file are business_id,
business_name, umbrellaTerm_category, latitude and
longitude of the business; from the reviews csv are
user id, business id and the star rating.

Fig 3.1.1

3.2 Building the Model
We build a collaborative filtering model using the
ALS train model of the spark mllib library. The model
is trained on the csv file which contains the businesses
in Las Vegas, users who have rated them and the
corresponding star rating. Before the dataset is fed
into the train model, it is preprocessed to conform to
the input requirements of ALS train. Since the dataset
contains the user ids and business ids as strings, and
the train model takes in parameters in int format, both
these fields are required to be mapped to unique
integers. This map as well as a reverse map (integer
ids to strings) are stored separately as part of the
model. These maps are used at a later stage while
predicting the rating for an unseen user and business
pair.

3.3 Endorsement Engine
The Endorsement Engine works on a user’s task list
and location, and produces three ordered plans of
businesses the user should visit to finish their tasks.
Each plan prioritizes a different attribute, such as
average business rating, round trip distance and an
equal weightage plan for business rating and round
trip distance.

The user’s task list, latitude and longitude (location)
are read from a CSV file. Each task in the user list
represents an Umbrella Term Category that the user’s
task belongs to. For every umbrella term in the list,
we retrieve the businesses that pertain to it, along with
the businesses’ location and rating. We filter these
businesses to pick out the ones which have been rated
by at least one user, and construct user_id,
business_id pairs for those businesses. We use our
Collaborative Filtering Model to predict ratings for all
these user-business pairs and normalize the ratings
within the range 0 to 5.

Once this has been done for every task, we perform a
cartesian product operation for business lists between
tasks. Since the number of combinations of
businesses could be a very large number, we restrict
this number by only picking the top ten user-business
pairs by rating. The number of combinations therefore
is restricted to the nth power of ten, if n is the number
of tasks specified by the user.

For each n-tuple combination of businesses, we
compute the average rating of the plan and the round
trip distance from user’s location to one business after
another, taken in order.

From these combinations, we choose one plan which
provides a plan with the best average rating and one
plan with the shortest round trip distance. We also
compute an equally weighted average of rating and
distance to provide an optimal plan. To evaluate our
results, we compare these plans with a combination of
businesses picked randomly based on the umbrella
term. Average rating, distance and a weighted score is
computed for the random plan.

3.4 Challenges
In this section, the challenges encountered while
doing the project are described.

1. The categories provided had to be grouped
into broader umbrella terms. This involved

manual annotation which is subjective to a
person and maintaining consistency was a
laborious task.

2. An individual business having multiple terms
comes under multiple umbrella terms, there
by activities, making the recommendation a
bit hazy.

3. The main challenge was addressing the
negative values in the rating predictions of
recommendation system library. This was
scaled to the appropriate range and handled.

4. Handling the cold start problem of a new
business which has not been rated by any
user. The recommendation system usually
eliminates the rows which are not previously
rated.

4. RESULTS
To test our endorsement system, ten randomly picked
users are considered along with the list of tasks to be
accomplished in their agenda. In this section the
results obtained by the agenda endorsement engine
are compared with the random plan for the three
parameters, as depicted in the graphs below.

. ​​Fig 4.1

In Fig 4.1, the scores of both the random plan and the
best plan are plotted.

In fig 4.2, the round trip distances of 10 randomly
picked users are compared with the results of random
plan. In case of the last user, the random agent works
slightly better than the agent proposed. This is
because the plans constructed were combinations of
top 10 businesses under every task category. The
distance based plan has a bias towards better ratings.
Therefore, there are better distance based plans that
exist, which we do not explore in our system in order
to reduce our search space.

Fig 4.2

 ​Fig 4.3

On similar lines , the score (weighted average of
round trip distance and distance) is compared between
the random plan and the optimised plan as shown in
fig 4.3.

5. FUTURE WORK

Several factors apart from the ones used by the system
could be considered for enhanced recommendations,
such as-

1. Give priority to user’s friends’ rating towards
businesses in the collaborative filtering model
predictions.

2. Annotations could be more accurate in terms
of co-relating the entire business description
with an umbrella term rather than individual
category terms in the description.

3. Take into account the hours of operation of
businesses along with usually busy hours and
suggest plans with enhanced optimality.

4. Handle missing values or negative rating
predictions by assigning default
ratings(overall average of all ratings) to

businesses that may not appear as part of the
training pairs.

5. The system can be further extended to handle
businesses in more than just one metropolitan
as well as to provide categories of businesses
apart from the top categories considered
currently (provides the user a wider variety of
activities he can carry out).

6. CONCLUSION

This project involves building an endorsement engine
which suggests the plan for performing all the tasks in
the agenda. Presently the engine focuses on the
businesses in Las Vegas and gives recommendation
only in that location. Three plans are provided by
default for the list of activities specified in the agenda.
Further a provision for giving a weighted bias value
towards either roundtrip distance or rating is given.
The results of the performance of engine with the
random plan are delineated with graphs. They also
emphasise on how the model proposed does better
than a random selection in terms of our two
fundamental parameters (round trip distance and
ratings). Down the line, the engine can be made more
sophisticated by considering other features for
proposing the plan.

7. REFERENCES

[1] ”Yelp Dataset Challenge.” Yelp. Web. 01 August
2018. https://www.yelp.com/dataset/challenge.

[2] ”An Introduction to Yelp Metrics as of September
30 2018.” Yelp. 26 May 2016.
http://www.yelp.com/factsheet

[3] “Mining of Massive Data Sets” by Anand
Rajaraman and Jeffrey Ullman

[4] “Distance between two points given latitude and
longitude”
https://www.movable-type.co.uk/scripts/latlong.ht
ml

[5] “Cartesian product between two lists in scala”
https://rosettacode.org/wiki/Cartesian_product_of_
two_or_more_lists

8. APPENDIX

Github link to code repository: https://bit.ly/2FSyxyt

Individual Contributions:

1. Ankitha Premkumar
a. Wrote script to convert the JSON files to CSV

format using simplejson.
b. Write script to filter out users from data set.
c. Wrote scala script to build a utility matrix of

users vs business.
d. Wrote a script in scala that accepts a Map

data structure and generates the plans for a
particular user.

e. Script to calculate average rating for each of
the proposed plans

2. Prathibha Muralidharan
a. Uploaded data to GCP with BigQuery API to

execute queries on the data for simplicity, and
further insights.

b. Write script to pick out businesses with the
desired categories only.

c. Script to pick random businesses from the
relevant categories for tasks which the user
wants to perform. Random task plan will be
used for evaluation against the recommended
plan.

d. Script to calculate distance to be travelled for
each plan.

e. Script for comparison between proposed plan
and random plan.

3. Reshma Malla
a. Analyzed data points for each city and

selected location with max data points
b. Script to map umbrella terms back to

businesses in Las Vegas.
c. Wrote a script in Scala to parse input which

is in JSON format to retrieve user’s tasks.
After this, all businesses that match the
user’s tasks are retrieved. This is repeated
for each task.

d. Wrote a script in scala to compute the
possible combinations of plans that would be
recommended to each user.

e. Script to scale negative predictions from
(-3.8, +3.8) to (0,5).

4. Sharath Ravishankar
a. Wrote script to extract category field for

each data point which is a string provided by
the business itself to describe one or more
categories it falls under.

b. Duplicacy in category terms spotted during
annotation leading to redundant categories.
A script to resolve this issue.

c. The recommendation system required
train-test split on the yelp data and wrote a
script to do the same. Included analysis over
the RMSE for the various test-train data
splits.

d. Random selection of the plan and predicting
it’s value from the model and its comparison
with our best selected plan.

e. Visualization for random plan vs Proposed
plan based on three parameters- ratings,
distance and score.

