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ABSTRACT 
The objective of the project is to recommend restaurants to users. 
We built different collaborative and content-based 
recommendation models and evaluated their performances using 
Yelp Dataset. For content-based approaches, we created business 
and user profiles and computed similarity between them to make 
personalized recommendations. We evaluated and compared the 
performance of the algorithms using RMSE (Root Mean Squared 
Error) metric. We developed a hybrid model by combining all the 
individual models which improved the overall RMSE. 

1 Introduction 
Recommendation System is one of the most important parts of e-
commerce and online media companies providing online services 
like Amazon, YouTube, Yelp, etc. Companies are constantly 
looking to improve their recommendations as better 
recommendations result in monetary gains. Personalized 
recommendations based on user interest and history is essential 
for enhanced user experience. We plan to address that by building 
a recommender system for recommending new restaurants to 
users. We focus on predicting the rating a user will give to a 
restaurant he has not visited. In order to do so, we implemented 
various Collaborating-Filtering Algorithms, along with Content-
Based algorithms. In the paper, we have compared the results of 
various algorithms and combined them into a Hybrid model to 
improve the results. Furthermore, based on the final Hybrid 
Model, we recommend top restaurants to a user. Looking at the 
skewness and sparsity of the data it is very difficult to measure the 
quality of the recommendations quantitatively, therefore, we do a 
subjective analysis of the recommendations made. 
 

2 Dataset 
The data we have used is from the Yelp Dataset Challenge Round 
12 [1]. The data comprises 5,996,996 reviews for 188,593 
businesses in 10 metropolitan areas from 1,518,169 users. For the 
purpose of our project, we only used reviews (user_id, 
business_id, rating, review_text) and business information 
(attributes and categories).  
 
We used data from 2 cities i.e. Pittsburgh and Las Vegas because 
the data for Pittsburgh is small as compared to data for Las Vegas 
which allowed us more testing and cross-validation on our 
systems. We wanted to attest that the models we built would also 
work well when tested on large data, therefore, we chose to 
publish results for Las Vegas. We further filtered data to keep 
users with more than 20 individual reviews for Pittsburgh and 
more than 50 for Las Vegas. Data was randomly split into 80% 

for training and 20% for testing. Standard preprocessing was 
applied to the textual data along with removing stop words [2], 
rare words (only occurring once in the dataset) and lemmatizing 
the data. Our processed data for Pittsburgh had 50,893 reviews, 
987 businesses, 3192 users and for Las Vegas had 158,880 
reviews, 8309 businesses, 5272 users. 
 

3 Methodology 

3.1 Baseline 
To establish a baseline to compare our recommendation models 
with, we first compute the average rating for each user. For each 
user-item pair in test data, we assign prediction as average rating 
of that user. In case, the user is missing in the train data, the 
predicted rating for that user is the average of all the ratings in the 
train data. 

3.2 Collaborative-Filtering Based Models 
Collaborative-Filtering (CF) Based Recommendation techniques 
have been quite successful in past giving promising results in this 
domain. The main idea behind these set of algorithms is that users 
with similar interests may like similar items. Unlike Content-
Based approaches which require the content of the items, to make 
recommendations, these methods only require ratings various 
users have given to various items. [3] The following sections 
describe some of the methods we implemented. 
 
3.2.1 Model-Based Collaborative Filtering 

We implemented model-based collaborative filtering based on 
matrix factorization which can be used to discover latent features 
underlying the interactions between users 𝑈	and items 𝐼 . Our 
objective is to then factorize 𝑋	 ∈ 𝑅'	×	) which is a matrix that 
contains all the ratings that the users have assigned to the items. 
Let 𝐾 be the number of latent features we want to extract. We, 
therefore, want to find two arbitrary matrices 𝑃	 ∈ 𝑅'	×	,  and 
𝑄	 ∈ 𝑅)	×	, such that their product estimates 𝑋. In order to get the 
user 𝑢’s estimated rating of item 𝑖 given by �̂�23, we can calculate 
the dot product of the two vectors corresponding to 𝑢 and 𝑖. 
																																																�̂�23 = 	𝑝26𝑞3																																													(1) 
The main intuition behind this is that if the product of 𝑃 and 𝑄 
can approximate the known values in 𝑋 then the other values 
computed by their product can be used as the predicted rating for 
any given item 𝑖 by user 𝑢. To learn the matrices 𝑃 and 𝑄, we 
minimize the regularized squared error on the set of known ratings 
given by the following equation: 



 
 

																		min > (𝑟23 − 𝑝26𝑞3)@
(2,3)∈B

+ 	𝜆(‖𝑃‖@ +	‖𝑄‖@)												(2) 

where 𝐷 is the set of (𝑢, 𝑖) pairs for which the rating, 𝑟23 is known 
and 𝜆 is the regularization parameter. 
 
We used two different approaches to minimize the above 
equation: stochastic gradient descent and alternating least squares 
[4]. 
 
3.2.1.1 Stochastic Gradient Descent (SGD)  

In this approach we first initialize the two matrices 𝑃 and 𝑄 with 
random values and for each user-item pair in the training set, the 
system predicts the rating �̂�23 and computes the associated error 
given by the square of the difference between the estimated rating 
(�̂�23)	and the actual rating (𝑟23). 
																																													𝑒 = (𝑟23 − �̂�23	)@																																						(3) 

To minimize the error, we can take the gradient of 𝑃 and 𝑄 for 
each training example and modify the parameters by a magnitude 
proportional to a learning rate, 𝛼 in the opposite direction of the 
gradient. 
																																					𝑞3 = 𝑞3 + 	𝛼(2𝑒𝑝2 + 	𝜆𝑞3)																												(4) 

																																					𝑝2 = 𝑝2 + 	𝛼(2𝑒𝑞3 + 	𝜆𝑝2)																										(5) 

3.2.1.2 Alternating Least Squares (ALS) 

In ALS minimization, we hold one set of latent feature vectors 
either 𝑞3 or 𝑝2 constant. By doing so, the optimization problem 
becomes quadratic. We can then take the derivative of equation 
with respect to the non-constant feature vectors. We set the 
derivative equal to zero and solve for the non-constant feature 
vectors. ALS technique rotates between fixing the 𝑞3’s and fixing 
the 𝑝2’s. When all 𝑝2’s are fixed, the system computes the 𝑞3 ’s 
by solving a least-squares problem and vice versa. This continues 
decreasing eq. (2) at each step until convergence. 
 
3.2.2 User-based Collaborative Filtering 

In User-based collaborative filtering, each row of utility matrix 
𝑋	 ∈ 𝑅'	×	) , represents a user, and each column represents an 
item. Each entry 𝑋2,3 is a rating that user 𝑢 has given to item 𝑖. 
For each user-item pair denoted by 𝑢, 𝑖 whose rating is unknown, 
we first find all its neighbors i.e. users who have also rated item 
𝑖.	The similarity between 𝑢 and it's neighbors is given by Pearson 
Similarity as defined in eq. (6). Rating of 𝑖 for user 𝑢	is computed 
by eq. (7). We use this because some users are easy raters as 
compared to others. This removes bias and bring all the users to 
the same level. 

												𝑠(𝑢, 𝑣) = 	
∑ (𝑟2,3 −	𝑟2Q)(𝑟R,3 −	𝑟RQ)	3∈)

S∑ (𝑟2,3 −	𝑟2Q)	3∈)
@ S∑ (𝑟R,3 −	𝑟RQ)	3∈)

@
											(6)	 

																					𝑟2,3 = 	 𝑟2Q +	
∑ (𝑟R,3 −	𝑟RQ) ∗ 𝑠(𝑢, 𝑣)	3∈)

∑ 𝑠(𝑢, 𝑣)	R∈'
																						(7)		 

 

3.2.3 Item-based Collaborative Filtering 

Unlike user-based collaborative filtering, for each user-item pair 
denoted by 𝑢, 𝑖 whose rating is unknown, we first find all the 
neighbors of 𝑖, i.e. items which are also rated by user 𝑢. The 
similarity is found between 𝑖 and it's all neighbors using Pearson 
Similarity. Then rating of 𝑖 is computed by taking the sum of 
ratings given by u to the neighbors of 𝑖  weighted over their 
similarity as mentioned in eq. (9).  
 

														𝑠(𝑖, 𝑗) = 	
∑ (𝑟3,2 −	𝑟XQ)(𝑟Y,2 −	𝑟ZQ)	2∈'

S∑ (𝑟3,2 −	𝑟XQ)	2∈'
@ S∑ (𝑟Y,2 −	𝑟ZQ)	2∈'

@
										(8) 

																																		𝑟3,2 = 		
∑ (𝑟2,Y) ∗ 𝑠(𝑖, 𝑗)	2∈'

∑ 𝑠(𝑖, 𝑗)	Y∈)
																													(9) 

However, to compute similarity we tried various other similarity 
measures [5,6]. Given two vectors 𝛼	and 𝛽, different similarities 
can be computed as following: 

a. Euclidean Similarity 

																𝑠𝑖𝑚(𝛼, 𝛽) = 	 _`

_`aB
 where 𝐷 = b∑ (𝛼3 −	𝛽3)@c

3de 					(10)       

b. Manhattan Similarity 

																𝑠𝑖𝑚(𝛼, 𝛽) = 	 _`

_`aB
 where 𝐷 =		∑ |𝛼3 −	𝛽3|c

3de 									(11) 

c. Jaccard Similarity 

																																𝑠𝑖𝑚(𝛼, 𝛽) = 	
∑ min	(𝛼3 −	𝛽3)c
3de

∑ max	(𝛼3 −	𝛽3)c
3de

																	(12) 

d. Tanimoto Similarity 

														𝑠𝑖𝑚(𝛼, 𝛽) = 	
∑ 𝛼3 ∗ 𝛽3c
3de

	∑ 𝛼3@c
3de + ∑ 𝛽3@c

3de 	− ∑ 𝛼3 ∗ 𝛽3c
3de 	

							(13) 

 

3.3 Content Based Models  
Content-based recommendation systems find similarity between 
users and items by building their corresponding feature vectors. 
The most important aspect of such models is determining those 
features which are transformed into vectors and then different 
similarity measures can be used to compute the similarity between 
them. We follow three different approaches to build user and item 
features as described below. 
 
3.3.1 Review Based Model 

In this particular model we combine all the reviews a restaurant 
has received into one single sentence. This single sentence is then 
transformed into vector using a bag of words model. Each entry in 
the vector is the count corresponding to a word in the sentence. 
We then construct the restaurant matrix of all the vectors and use 
two different techniques to capture the relevance between the 
words and a restaurant. First, we compute TF-IDF (Term 
Frequency-Inverse Document Frequency) of each term t (word in 



 

the sentence) in the document d (each document vector) using the 
following formula, 

																																𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔
1 + 𝑛q

1 + 𝑑𝑓(𝑑, 𝑡) + 1																							(14)	

 
																													𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡)																		(15) 
where, 𝑛q  is the total number of documents, 𝑑𝑓(𝑑, 𝑡)  is the 
number of documents containing the term 𝑡 and 𝑡𝑓(𝑡, 𝑑) is the 
number of terms 𝑡 in document 𝑑. 
 
Apart from TF-IDF, we convert each document into a vector 
using Gensim’s doc2vec implementation. The size of the vector is 
kept in proportion with the vocabulary of the dataset. To compute 
the matrix corresponding to a user 𝑈, we sum the vectors of 
businesses a user has reviewed in train data weighted by the rating 
of each review. Each vector in the user and business matrix is L2 
normalized. Now we compute the cosine similarity 𝑆 by simply 
multiplying the normalized user and business matrices.  
 

𝐵 ∈ 𝑅t	×	u 
𝑈 ∈ 𝑅'	×	u 

𝑆 = 𝐵𝑈6, 𝑆 ∈ 𝑅t	×	' 
where 𝐵  is the normalized matrix for restaurants, 𝑈  is the 
normalized matrix for users, 𝑆 is the similarity matrix where each 
value 𝑆v,2	 ∈ 	 [0, 1]	 represents the similarity between each 
restaurant 𝑏 and user 𝑢, 𝑅 is the number of unique restaurants, 𝑊 
is number of unique words in TF-IDF implementation or vector 
size specified in doc2vec implementation. 
 
To make recommendations, we can rank the similarities for each 
user in descending order and recommend the top ones. In order to 
validate our results, we generated predictions for each user-item 
pair in test data. Therefore, to transform similarities (0-1) into 
ratings (1-5), we can use any regressor which captures the non-
linearity of the dataset.  
 
3.3.2 Text Based Model 

In this model, the restaurant matrix is computed in a similar way 
as done in the previous model. Instead of computing the user 
matrix by linearly adding the business vectors which that user has 
rated, here we follow a different approach. We combined all the 
reviews a user had given into one single sentence and followed 
the same approach mentioned above for business matrix. We 
compute the cosine similarity by multiplying the normalized user 
and business matrices. Similar to a review-based model we can 
use regressor to transform the similarity (0-1) values into ratings 
(1-5). 
 
3.3.3 Category Based Model 

Unlike above two models, in this model we come up with entirely 
new features. Each business in the dataset has categories and 
attributes in the following json format, 
Old_string =  
{ 
  "attributes": { 

    "BikeParking": "False", 
    "BusinessAcceptsCreditCards": "True", 
    "BusinessParking": "{'garage': False, 'street': 
True, 'validated': False, 'lot': False, 'valet': 
False}", 
    "NoiseLevel": "average", 
    "RestaurantsAttire": "casual", 
    "RestaurantsDelivery": "False", 
    "RestaurantsGoodForGroups": "True", 
    "RestaurantsPriceRange2": "2" 
  }, 
  "categories": "Tours, Breweries, Pizza, Restaurants, 
Food, Hotels & Travel" 
} 
We transform the data into a single string where we remove the 
terms (like Bike Parking, RestaurantsDelivery) whose 
corresponding value is false and keep the terms whose 
corresponding value is true. For each term 𝑘	which has a value 𝑣 
we transform them into the format, 𝑘_𝑣. In this data, no stemming 
or lemmatization was performed only the case of entire data was 
changed to lower. The transformed data is of the following 
format, 
 
New_string =  
businessacceptscreditcards businessparking_street 
noiselevel_average restaurantsattire_casual 
restaurantsgoodforgroups restaurantspricerange2_2 
tours breweries pizza restaurants food hotels travel 
 
The motivation behind building these features is that the attributes 
and categories capture most important information about the 
business and the user visiting a particular type of businesses 
would be interested in visiting other businesses with similar 
features.  
 
For each business we have a string representing its features so 
similar to the review-based model (described above), we 
transform this sentence into vectors using TF-IDF and doc2vec. 
We construct the business matric and user matric similar to the 
method described in review-based model. To compute the 
similarity, we multiply the normalized matrices and a regressor 
can be used to transform the similarities (0-1) to ratings (1-5).  
 

3.4 Hybrid Recommendation System 
The hybrid model combines all the predictions generated from the 
above-mentioned models by their weighted sum. The CF model 
uses the ratings, while the content-based model uses reviews or 
categories to capture the similarity between users and businesses 
to predict the unknown rating. The combination of all the models 
can grasp different aspects of the relationship between users and 
businesses to give a more accurate prediction. 
 

4 Results 
In our experiments, approximately 80 percent of the data was 
randomly selected for training, and the remaining data were used 
to verify the performance of the proposed system. Since most of 
our models require tuning of hyper-parameters, 20% of the 



 
 

training set is separated as the validation set. After the optimal 
hyper-parameters have been found, the model is retrained on the 
entire training data and the performance is reported on the 
selected test data 
 

4.1 Evaluation Metric 
After researching different kinds of evaluation metrics used to 
evaluate recommendation systems, we chose to evaluate our 
system based on the root mean square error (𝑅𝑀𝑆𝐸). Given that 
our system generates predicted ratings �̂�23  of a user 𝑢  for a 
business 𝑖 for a test set 𝑇 of user-business pairs for which the true 
ratings 𝑟23 are known, 𝑅𝑀𝑆𝐸 is given by 

																											𝑅𝑀𝑆𝐸 =	�
1
|𝑇| > (𝑟23 − �̂�23	)@

(2,3)∈6

																					(16) 

4.2 Experiments 
4.2.1 Model Based Collaborative Filtering 

The collaborative filtering by stochastic gradient descent (SGD) 
has three hyper-parameters namely, the learning rate 𝛼 , 
regularization coefficient 𝜆 and the number of latent variables 𝐾. 
We use a grid-based search to tune the hyperparameters     where 
we fix two values and try to optimize the third one by 
incrementing its value by a fixed amount in consecutive steps. 
 
The final set of optimal hyperparameters are 𝛼	 = 	0.005, 𝜆	 =
	0.01 and 𝐾	 = 12. Fig 1 shows the learning curve using the 
optimal set of hyperparameters for Las Vegas. 
 

 
Fig 1. Learning Curve for SGD method 

We use the in-built library in Spark Mllib for collaborative 
filtering by alternating least square (ALS). The ALS function in 
Spark has three hyperparameters namely, the number of iterations, 
𝑖, the rank of matrix, 𝐾 and the regularization coefficient, 𝜆. For 
ALS, higher number of iterations usually result in lower RMSE. 
However, 𝑖  greater than 20 is not possible due to memory 
constraints. Therefore, we set 𝑖	 = 	20. The final set of optimal 
hyperparameters are 𝑖	 = 	20, 𝐾		 = 	12 and 𝜆	 = 	0.1. The results 
for model based collaborative filtering are detailed in Table 3. 

4.2.1 User Based and Item Based Collaborative Filtering 

One critical step in the user based and item-based collaborative 
filtering algorithm is to compute the similarity between users or 
items. We implemented different similarity measures (names) as 
described in Section (3.2.3) and tested them on our data set. These 
experiments were run on the training data and the performance is 
reported on the test data. Table 1 shows the experimental results.  
 
4.2.2 Content Based 

All the models described in content-based recommendation follow 
a similar approach, where features are extracted from review text 
or category depending on the model. The text is vectorized using 
two main techniques namely TF-IDF and Doc2Vec model. The 
results for both techniques are detailed in Table 2. In our 
experiments, the Doc2Vec model performed better than TF-IDF 
and therefore we employed that for our hybrid model. In order to 
validate our recommendations on the test dataset, we transformed 
our similarity values computed using the features into real-values 
ratings. To do this transformation, we experimented with various 
regressors like Linear Regression, Random Forest regression and 
Gradient Boosting Regression to do a regression between the 
similarity values and the ratings in the training set. We again used 
a grid-based search to tune the hyperparameters on the validation 
set and report the final result on the test dataset. The performance 
of various regressors is detailed in Table 2. The results for hybrid 
model are shown in Table 3. Fig 2 shows the RMSE values for 
different models for Pittsburgh city. 
 
To analyze the correctness of our methodology we make 
recommendations for each user in the test data. Firstly, for each 
user in test data we generate predictions corresponding to all the 
businesses in the train data. We consider all the three content-
based models described above in section 3.3. Each model 
computes a similarity matrix between a user and item, where each 
similarity value in the matrix conveys how closely the user and 
item are related. We take top K items sorted by decreasing 
similarity measure for each user. Then we take union of the items 
from all three models to get one common itemset per user in the 
test. Now we use the predictions we made using our hybrid model 
to get the rating for the business in the final itemset. We finally 
recommend businesses to a user in the order of prediction values.  
 
To look at what our recommendations mean we randomly picked 
a user (Katie) and analyzed her results. We had 34 train points for 
her which she rated high. Of all the restaurants she visited 67% of 
the restaurants served at least pizza, Italian or alcohol, 98% were 
in price range 1 or 2 (from 1-4), 100% of them accepted credit 
cards, 70% of them were good for kids, and 65% of them had 
average noise level (from quiet, average, loud, and very loud). 
From the recommendations we made using our hybrid model 
described above we found 80% served Italian, pizza or alcohol, 
100% were in price range 1 or 2, all of them accepted credit cards, 
70% of them had average noise level. Moreover, 65% of them 
were also good for kids. Overall, we observed that the restaurants 
that we recommended were able to incorporate her preferences 
and recommended nearly similar restaurants which she had been 
to in the past.  



Table 1. RMSEs for User and Item based Collaborative Filtering 

Table 2. RMSEs for Content Based models 

 

 

 

          Table 3. RMSEs for Model based Collaborative Filtering.                                        Table 4. RMSEs for Hybrid model

 

 
Fig 2. RMSE vs Model for Pittsburgh city 

5 Conclusion 
In this project, we implemented different recommendation models 
based on Collaborative-Filtering and Content-Based techniques. 
To improve our predictions further, we built a Hybrid-Model by 
combining various predictions using their weighted sum. The 
essence of our hybrid model is that each individual model in it 

captures some unique part of the relationship between users and 
businesses. The final model improves predictions as well as 
recommendations.  
 
Furthermore, the recommendations can be more personalized and 
improved if social network of a user is also considered. 
Additionally, tracking the change in user preferences over time 
may enhance the recommendations.  

APPENDIX 
The code is pushed on github and can be found here: 
https://github.com/Lakshya-
Kejriwal/Yelp_Hybrid_Recommender_System 
The data is uploaded on google drive and can be found here: 
https://drive.google.com/drive/folders/1Q6zdfU_k1DJ3I963AlT6
KQTGgZNLATR-?usp=sharing 
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Similarity Measures 

Pearson Euclidean Manhattan Jaccard Tanimoto 
Train Test Train Test Train Test Train Test Train Test 

User 
based  

Pittsburgh 0.980 1.015 0.983 1.018 0.983 1.018 1.109 1.081 0.975 1.017 
Las Vegas 1.129 1.185 1.132 1.187 1.348 1.190 1.277 1.199 1.123 1.187 

Item 
based  

Pittsburgh 0.305 0.972 0.848 0.957 0.849 0.957 0.711 1.056 1.021 0.961 
Las Vegas 0.236 1.238 1.014 1.167 1.015 1.167 0.823 1.307 1.348 1.190 

Model 

Method TF-IDF Doc2Vec 

City 
Linear 

Regression 

Random 
forest 

Regression 

Gradient 
boosting 

Regression 

Linear 
Regression 

Random forest 
Regression 

Gradient 
boosting 

Regression 
Train Test Train Test Train Test Train Test Train Test Train Test 

Category 
Pittsburgh 1.031 1.036 1.026 1.048 1.031 1.036 1.031 1.038 1.007 1.029 0.995 1.028 

Las Vegas 1.227 1.241 1.229 1.236 1.230 1.232 1.225 1.239 1.227 1.234 1.229 1.231 

Review Pittsburgh 1.029 1.041 1.029 1.039 1.031 1.037 1.032 1.037 0.981 1.007 0.974 1.002 
Las Vegas 1.231 1.227 1.231 1.226 1.233 1.226 1.230 1.226 1.239 1.224 1.229 1.224 

Text 
Pittsburgh 1.031 1.038 1.030 1.037 1.032 1.037 1.031 1.037 1.016 1.040 1.032 1.036 
Las Vegas 1.233 1.227 1.233 1.226 1.232 1.226 1.232 1.226 1.231 1.225 1.230 1.225 

Method SGD ALS 
City Train Test Train Test 
Pittsburgh 0.839 0.931 0.830 0.950 
Las Vegas 0.961 1.106 0.957 1.138 

Method Baseline Hybrid 
City Train Test Train Test 
Pittsburgh 1.109 1.224 0.813 0.911 
Las Vegas 1.183 1.291 0.876 0.996 


