
Hybrid Recommender System: Recommending Restaurants to Users
Dharmik Ghoghari

 Computer Science
 University of Southern California

ghoghari@usc.edu

Lakshya Kejriwal
Computer Science

 University of Southern California
 lkejriwa@usc.edu

Rishab Kumar
Computer Science

 University of Southern California
 rishabku@usc.edu

ABSTRACT
The objective of the project is to recommend restaurants to users.
We built different collaborative and content-based
recommendation models and evaluated their performances using
Yelp Dataset. For content-based approaches, we created business
and user profiles and computed similarity between them to make
personalized recommendations. We evaluated and compared the
performance of the algorithms using RMSE (Root Mean Squared
Error) metric. We developed a hybrid model by combining all the
individual models which improved the overall RMSE.

1 Introduction
Recommendation System is one of the most important parts of e-
commerce and online media companies providing online services
like Amazon, YouTube, Yelp, etc. Companies are constantly
looking to improve their recommendations as better
recommendations result in monetary gains. Personalized
recommendations based on user interest and history is essential
for enhanced user experience. We plan to address that by building
a recommender system for recommending new restaurants to
users. We focus on predicting the rating a user will give to a
restaurant he has not visited. In order to do so, we implemented
various Collaborating-Filtering Algorithms, along with Content-
Based algorithms. In the paper, we have compared the results of
various algorithms and combined them into a Hybrid model to
improve the results. Furthermore, based on the final Hybrid
Model, we recommend top restaurants to a user. Looking at the
skewness and sparsity of the data it is very difficult to measure the
quality of the recommendations quantitatively, therefore, we do a
subjective analysis of the recommendations made.

2 Dataset
The data we have used is from the Yelp Dataset Challenge Round
12 [1]. The data comprises 5,996,996 reviews for 188,593
businesses in 10 metropolitan areas from 1,518,169 users. For the
purpose of our project, we only used reviews (user_id,
business_id, rating, review_text) and business information
(attributes and categories).

We used data from 2 cities i.e. Pittsburgh and Las Vegas because
the data for Pittsburgh is small as compared to data for Las Vegas
which allowed us more testing and cross-validation on our
systems. We wanted to attest that the models we built would also
work well when tested on large data, therefore, we chose to
publish results for Las Vegas. We further filtered data to keep
users with more than 20 individual reviews for Pittsburgh and
more than 50 for Las Vegas. Data was randomly split into 80%

for training and 20% for testing. Standard preprocessing was
applied to the textual data along with removing stop words [2],
rare words (only occurring once in the dataset) and lemmatizing
the data. Our processed data for Pittsburgh had 50,893 reviews,
987 businesses, 3192 users and for Las Vegas had 158,880
reviews, 8309 businesses, 5272 users.

3 Methodology

3.1 Baseline
To establish a baseline to compare our recommendation models
with, we first compute the average rating for each user. For each
user-item pair in test data, we assign prediction as average rating
of that user. In case, the user is missing in the train data, the
predicted rating for that user is the average of all the ratings in the
train data.

3.2 Collaborative-Filtering Based Models
Collaborative-Filtering (CF) Based Recommendation techniques
have been quite successful in past giving promising results in this
domain. The main idea behind these set of algorithms is that users
with similar interests may like similar items. Unlike Content-
Based approaches which require the content of the items, to make
recommendations, these methods only require ratings various
users have given to various items. [3] The following sections
describe some of the methods we implemented.

3.2.1 Model-Based Collaborative Filtering

We implemented model-based collaborative filtering based on
matrix factorization which can be used to discover latent features
underlying the interactions between users 𝑈	and items 𝐼 . Our
objective is to then factorize 𝑋	 ∈ 𝑅'	×) which is a matrix that
contains all the ratings that the users have assigned to the items.
Let 𝐾 be the number of latent features we want to extract. We,
therefore, want to find two arbitrary matrices 𝑃	 ∈ 𝑅'	×	, and
𝑄	 ∈ 𝑅)	×	, such that their product estimates 𝑋. In order to get the
user 𝑢’s estimated rating of item 𝑖 given by �̂�23, we can calculate
the dot product of the two vectors corresponding to 𝑢 and 𝑖.
																																																�̂�23 = 	𝑝26𝑞3																																													(1)
The main intuition behind this is that if the product of 𝑃 and 𝑄
can approximate the known values in 𝑋 then the other values
computed by their product can be used as the predicted rating for
any given item 𝑖 by user 𝑢. To learn the matrices 𝑃 and 𝑄, we
minimize the regularized squared error on the set of known ratings
given by the following equation:

																		min > (𝑟23 − 𝑝26𝑞3)@
(2,3)∈B

+ 	𝜆(‖𝑃‖@ +	‖𝑄‖@)												(2)

where 𝐷 is the set of (𝑢, 𝑖) pairs for which the rating, 𝑟23 is known
and 𝜆 is the regularization parameter.

We used two different approaches to minimize the above
equation: stochastic gradient descent and alternating least squares
[4].

3.2.1.1 Stochastic Gradient Descent (SGD)

In this approach we first initialize the two matrices 𝑃 and 𝑄 with
random values and for each user-item pair in the training set, the
system predicts the rating �̂�23 and computes the associated error
given by the square of the difference between the estimated rating
(�̂�23)	and the actual rating (𝑟23).
																																													𝑒 = (𝑟23 − �̂�23)@																																						(3)

To minimize the error, we can take the gradient of 𝑃 and 𝑄 for
each training example and modify the parameters by a magnitude
proportional to a learning rate, 𝛼 in the opposite direction of the
gradient.
																																					𝑞3 = 𝑞3 + 	𝛼(2𝑒𝑝2 + 	𝜆𝑞3)																												(4)

																																					𝑝2 = 𝑝2 + 	𝛼(2𝑒𝑞3 + 	𝜆𝑝2)																										(5)

3.2.1.2 Alternating Least Squares (ALS)

In ALS minimization, we hold one set of latent feature vectors
either 𝑞3 or 𝑝2 constant. By doing so, the optimization problem
becomes quadratic. We can then take the derivative of equation
with respect to the non-constant feature vectors. We set the
derivative equal to zero and solve for the non-constant feature
vectors. ALS technique rotates between fixing the 𝑞3’s and fixing
the 𝑝2’s. When all 𝑝2’s are fixed, the system computes the 𝑞3 ’s
by solving a least-squares problem and vice versa. This continues
decreasing eq. (2) at each step until convergence.

3.2.2 User-based Collaborative Filtering

In User-based collaborative filtering, each row of utility matrix
𝑋	 ∈ 𝑅'	×) , represents a user, and each column represents an
item. Each entry 𝑋2,3 is a rating that user 𝑢 has given to item 𝑖.
For each user-item pair denoted by 𝑢, 𝑖 whose rating is unknown,
we first find all its neighbors i.e. users who have also rated item
𝑖.	The similarity between 𝑢 and it's neighbors is given by Pearson
Similarity as defined in eq. (6). Rating of 𝑖 for user 𝑢	is computed
by eq. (7). We use this because some users are easy raters as
compared to others. This removes bias and bring all the users to
the same level.

												𝑠(𝑢, 𝑣) = 	
∑ (𝑟2,3 −	𝑟2Q)(𝑟R,3 −	𝑟RQ)	3∈)

S∑ (𝑟2,3 −	𝑟2Q)	3∈)
@ S∑ (𝑟R,3 −	𝑟RQ)	3∈)

@
											(6)	

																					𝑟2,3 = 	 𝑟2Q +	
∑ (𝑟R,3 −	𝑟RQ) ∗ 𝑠(𝑢, 𝑣)	3∈)

∑ 𝑠(𝑢, 𝑣)	R∈'
																						(7)		

3.2.3 Item-based Collaborative Filtering

Unlike user-based collaborative filtering, for each user-item pair
denoted by 𝑢, 𝑖 whose rating is unknown, we first find all the
neighbors of 𝑖, i.e. items which are also rated by user 𝑢. The
similarity is found between 𝑖 and it's all neighbors using Pearson
Similarity. Then rating of 𝑖 is computed by taking the sum of
ratings given by u to the neighbors of 𝑖 weighted over their
similarity as mentioned in eq. (9).

														𝑠(𝑖, 𝑗) = 	
∑ (𝑟3,2 −	𝑟XQ)(𝑟Y,2 −	𝑟ZQ)	2∈'

S∑ (𝑟3,2 −	𝑟XQ)	2∈'
@ S∑ (𝑟Y,2 −	𝑟ZQ)	2∈'

@
										(8)

																																		𝑟3,2 = 		
∑ (𝑟2,Y) ∗ 𝑠(𝑖, 𝑗)	2∈'

∑ 𝑠(𝑖, 𝑗)	Y∈)
																													(9)

However, to compute similarity we tried various other similarity
measures [5,6]. Given two vectors 𝛼	and 𝛽, different similarities
can be computed as following:

a. Euclidean Similarity

																𝑠𝑖𝑚(𝛼, 𝛽) = 	 _`

_`aB
 where 𝐷 = b∑ (𝛼3 −	𝛽3)@c

3de 					(10)

b. Manhattan Similarity

																𝑠𝑖𝑚(𝛼, 𝛽) = 	 _`

_`aB
 where 𝐷 =		∑ |𝛼3 −	𝛽3|c

3de 									(11)

c. Jaccard Similarity

																																𝑠𝑖𝑚(𝛼, 𝛽) = 	
∑ min	(𝛼3 −	𝛽3)c
3de

∑ max	(𝛼3 −	𝛽3)c
3de

																	(12)

d. Tanimoto Similarity

														𝑠𝑖𝑚(𝛼, 𝛽) = 	
∑ 𝛼3 ∗ 𝛽3c
3de

	∑ 𝛼3@c
3de + ∑ 𝛽3@c

3de 	− ∑ 𝛼3 ∗ 𝛽3c
3de 	

							(13)

3.3 Content Based Models
Content-based recommendation systems find similarity between
users and items by building their corresponding feature vectors.
The most important aspect of such models is determining those
features which are transformed into vectors and then different
similarity measures can be used to compute the similarity between
them. We follow three different approaches to build user and item
features as described below.

3.3.1 Review Based Model

In this particular model we combine all the reviews a restaurant
has received into one single sentence. This single sentence is then
transformed into vector using a bag of words model. Each entry in
the vector is the count corresponding to a word in the sentence.
We then construct the restaurant matrix of all the vectors and use
two different techniques to capture the relevance between the
words and a restaurant. First, we compute TF-IDF (Term
Frequency-Inverse Document Frequency) of each term t (word in

the sentence) in the document d (each document vector) using the
following formula,

																																𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔
1 + 𝑛q

1 + 𝑑𝑓(𝑑, 𝑡) + 1																							(14)	

																													𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡)																		(15)
where, 𝑛q is the total number of documents, 𝑑𝑓(𝑑, 𝑡) is the
number of documents containing the term 𝑡 and 𝑡𝑓(𝑡, 𝑑) is the
number of terms 𝑡 in document 𝑑.

Apart from TF-IDF, we convert each document into a vector
using Gensim’s doc2vec implementation. The size of the vector is
kept in proportion with the vocabulary of the dataset. To compute
the matrix corresponding to a user 𝑈, we sum the vectors of
businesses a user has reviewed in train data weighted by the rating
of each review. Each vector in the user and business matrix is L2
normalized. Now we compute the cosine similarity 𝑆 by simply
multiplying the normalized user and business matrices.

𝐵 ∈ 𝑅t	×	u
𝑈 ∈ 𝑅'	×	u

𝑆 = 𝐵𝑈6, 𝑆 ∈ 𝑅t	×	'
where 𝐵 is the normalized matrix for restaurants, 𝑈 is the
normalized matrix for users, 𝑆 is the similarity matrix where each
value 𝑆v,2	 ∈ 	 [0, 1]	 represents the similarity between each
restaurant 𝑏 and user 𝑢, 𝑅 is the number of unique restaurants, 𝑊
is number of unique words in TF-IDF implementation or vector
size specified in doc2vec implementation.

To make recommendations, we can rank the similarities for each
user in descending order and recommend the top ones. In order to
validate our results, we generated predictions for each user-item
pair in test data. Therefore, to transform similarities (0-1) into
ratings (1-5), we can use any regressor which captures the non-
linearity of the dataset.

3.3.2 Text Based Model

In this model, the restaurant matrix is computed in a similar way
as done in the previous model. Instead of computing the user
matrix by linearly adding the business vectors which that user has
rated, here we follow a different approach. We combined all the
reviews a user had given into one single sentence and followed
the same approach mentioned above for business matrix. We
compute the cosine similarity by multiplying the normalized user
and business matrices. Similar to a review-based model we can
use regressor to transform the similarity (0-1) values into ratings
(1-5).

3.3.3 Category Based Model

Unlike above two models, in this model we come up with entirely
new features. Each business in the dataset has categories and
attributes in the following json format,
Old_string =
{
 "attributes": {

 "BikeParking": "False",
 "BusinessAcceptsCreditCards": "True",
 "BusinessParking": "{'garage': False, 'street':
True, 'validated': False, 'lot': False, 'valet':
False}",
 "NoiseLevel": "average",
 "RestaurantsAttire": "casual",
 "RestaurantsDelivery": "False",
 "RestaurantsGoodForGroups": "True",
 "RestaurantsPriceRange2": "2"
 },
 "categories": "Tours, Breweries, Pizza, Restaurants,
Food, Hotels & Travel"
}
We transform the data into a single string where we remove the
terms (like Bike Parking, RestaurantsDelivery) whose
corresponding value is false and keep the terms whose
corresponding value is true. For each term 𝑘	which has a value 𝑣
we transform them into the format, 𝑘_𝑣. In this data, no stemming
or lemmatization was performed only the case of entire data was
changed to lower. The transformed data is of the following
format,

New_string =
businessacceptscreditcards businessparking_street
noiselevel_average restaurantsattire_casual
restaurantsgoodforgroups restaurantspricerange2_2
tours breweries pizza restaurants food hotels travel

The motivation behind building these features is that the attributes
and categories capture most important information about the
business and the user visiting a particular type of businesses
would be interested in visiting other businesses with similar
features.

For each business we have a string representing its features so
similar to the review-based model (described above), we
transform this sentence into vectors using TF-IDF and doc2vec.
We construct the business matric and user matric similar to the
method described in review-based model. To compute the
similarity, we multiply the normalized matrices and a regressor
can be used to transform the similarities (0-1) to ratings (1-5).

3.4 Hybrid Recommendation System
The hybrid model combines all the predictions generated from the
above-mentioned models by their weighted sum. The CF model
uses the ratings, while the content-based model uses reviews or
categories to capture the similarity between users and businesses
to predict the unknown rating. The combination of all the models
can grasp different aspects of the relationship between users and
businesses to give a more accurate prediction.

4 Results
In our experiments, approximately 80 percent of the data was
randomly selected for training, and the remaining data were used
to verify the performance of the proposed system. Since most of
our models require tuning of hyper-parameters, 20% of the

training set is separated as the validation set. After the optimal
hyper-parameters have been found, the model is retrained on the
entire training data and the performance is reported on the
selected test data

4.1 Evaluation Metric
After researching different kinds of evaluation metrics used to
evaluate recommendation systems, we chose to evaluate our
system based on the root mean square error (𝑅𝑀𝑆𝐸). Given that
our system generates predicted ratings �̂�23 of a user 𝑢 for a
business 𝑖 for a test set 𝑇 of user-business pairs for which the true
ratings 𝑟23 are known, 𝑅𝑀𝑆𝐸 is given by

																											𝑅𝑀𝑆𝐸 =	�
1
|𝑇| > (𝑟23 − �̂�23)@

(2,3)∈6

																					(16)

4.2 Experiments
4.2.1 Model Based Collaborative Filtering

The collaborative filtering by stochastic gradient descent (SGD)
has three hyper-parameters namely, the learning rate 𝛼 ,
regularization coefficient 𝜆 and the number of latent variables 𝐾.
We use a grid-based search to tune the hyperparameters where
we fix two values and try to optimize the third one by
incrementing its value by a fixed amount in consecutive steps.

The final set of optimal hyperparameters are 𝛼	 = 	0.005, 𝜆	 =
	0.01 and 𝐾	 = 12. Fig 1 shows the learning curve using the
optimal set of hyperparameters for Las Vegas.

Fig 1. Learning Curve for SGD method

We use the in-built library in Spark Mllib for collaborative
filtering by alternating least square (ALS). The ALS function in
Spark has three hyperparameters namely, the number of iterations,
𝑖, the rank of matrix, 𝐾 and the regularization coefficient, 𝜆. For
ALS, higher number of iterations usually result in lower RMSE.
However, 𝑖 greater than 20 is not possible due to memory
constraints. Therefore, we set 𝑖	 = 	20. The final set of optimal
hyperparameters are 𝑖	 = 	20, 𝐾		 = 	12 and 𝜆	 = 	0.1. The results
for model based collaborative filtering are detailed in Table 3.

4.2.1 User Based and Item Based Collaborative Filtering

One critical step in the user based and item-based collaborative
filtering algorithm is to compute the similarity between users or
items. We implemented different similarity measures (names) as
described in Section (3.2.3) and tested them on our data set. These
experiments were run on the training data and the performance is
reported on the test data. Table 1 shows the experimental results.

4.2.2 Content Based

All the models described in content-based recommendation follow
a similar approach, where features are extracted from review text
or category depending on the model. The text is vectorized using
two main techniques namely TF-IDF and Doc2Vec model. The
results for both techniques are detailed in Table 2. In our
experiments, the Doc2Vec model performed better than TF-IDF
and therefore we employed that for our hybrid model. In order to
validate our recommendations on the test dataset, we transformed
our similarity values computed using the features into real-values
ratings. To do this transformation, we experimented with various
regressors like Linear Regression, Random Forest regression and
Gradient Boosting Regression to do a regression between the
similarity values and the ratings in the training set. We again used
a grid-based search to tune the hyperparameters on the validation
set and report the final result on the test dataset. The performance
of various regressors is detailed in Table 2. The results for hybrid
model are shown in Table 3. Fig 2 shows the RMSE values for
different models for Pittsburgh city.

To analyze the correctness of our methodology we make
recommendations for each user in the test data. Firstly, for each
user in test data we generate predictions corresponding to all the
businesses in the train data. We consider all the three content-
based models described above in section 3.3. Each model
computes a similarity matrix between a user and item, where each
similarity value in the matrix conveys how closely the user and
item are related. We take top K items sorted by decreasing
similarity measure for each user. Then we take union of the items
from all three models to get one common itemset per user in the
test. Now we use the predictions we made using our hybrid model
to get the rating for the business in the final itemset. We finally
recommend businesses to a user in the order of prediction values.

To look at what our recommendations mean we randomly picked
a user (Katie) and analyzed her results. We had 34 train points for
her which she rated high. Of all the restaurants she visited 67% of
the restaurants served at least pizza, Italian or alcohol, 98% were
in price range 1 or 2 (from 1-4), 100% of them accepted credit
cards, 70% of them were good for kids, and 65% of them had
average noise level (from quiet, average, loud, and very loud).
From the recommendations we made using our hybrid model
described above we found 80% served Italian, pizza or alcohol,
100% were in price range 1 or 2, all of them accepted credit cards,
70% of them had average noise level. Moreover, 65% of them
were also good for kids. Overall, we observed that the restaurants
that we recommended were able to incorporate her preferences
and recommended nearly similar restaurants which she had been
to in the past.

Table 1. RMSEs for User and Item based Collaborative Filtering

Table 2. RMSEs for Content Based models

 Table 3. RMSEs for Model based Collaborative Filtering. Table 4. RMSEs for Hybrid model

Fig 2. RMSE vs Model for Pittsburgh city

5 Conclusion
In this project, we implemented different recommendation models
based on Collaborative-Filtering and Content-Based techniques.
To improve our predictions further, we built a Hybrid-Model by
combining various predictions using their weighted sum. The
essence of our hybrid model is that each individual model in it

captures some unique part of the relationship between users and
businesses. The final model improves predictions as well as
recommendations.

Furthermore, the recommendations can be more personalized and
improved if social network of a user is also considered.
Additionally, tracking the change in user preferences over time
may enhance the recommendations.

APPENDIX
The code is pushed on github and can be found here:
https://github.com/Lakshya-
Kejriwal/Yelp_Hybrid_Recommender_System
The data is uploaded on google drive and can be found here:
https://drive.google.com/drive/folders/1Q6zdfU_k1DJ3I963AlT6
KQTGgZNLATR-?usp=sharing

REFERENCES
[1] Yelp Dataset Challenge www.yelp.com/dataset challenge
[2] Natural Language Toolkit (NLTK): http://www.nltk.org
[3] Yingtong Dou (2016). A survey of Collaborative Filtering algorithms for Social

Recommender System. International Conference on Semantics, Knowledge and
grids (12).

[4] R. Bell, Y. Koren and C. Volinsky, "Matrix Factorization Techniques for
Recommender Systems," in Computer, vol. 42, no., pp. 30-37, 2009.
doi:10.1109/MC.2009.263

[5] Sridhar Sondur, Amit Chigadani. “Similarity Measures for Recommender
Systems: A Comparative Study”, Journal for Research, Vol 2 Issue 3.

[6] KG Saranya, “Performance Comparison of Different Similarity Measures for
Collaborating Filtering Technique”, Indian Journal of Science and Technology,
Vol 9(29)

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

User
-Base

d CF

Ite
m-Base

d CF

Cate
go

ry-
Base

d

Revie
w-Base

d

Te
xt-

Base
d

ALS SG
D

Hyb
rid

RM
SE

Pittsburgh

Train RMSE Test RMSE

Model City
Similarity Measures

Pearson Euclidean Manhattan Jaccard Tanimoto
Train Test Train Test Train Test Train Test Train Test

User
based

Pittsburgh 0.980 1.015 0.983 1.018 0.983 1.018 1.109 1.081 0.975 1.017
Las Vegas 1.129 1.185 1.132 1.187 1.348 1.190 1.277 1.199 1.123 1.187

Item
based

Pittsburgh 0.305 0.972 0.848 0.957 0.849 0.957 0.711 1.056 1.021 0.961
Las Vegas 0.236 1.238 1.014 1.167 1.015 1.167 0.823 1.307 1.348 1.190

Model

Method TF-IDF Doc2Vec

City
Linear

Regression

Random
forest

Regression

Gradient
boosting

Regression

Linear
Regression

Random forest
Regression

Gradient
boosting

Regression
Train Test Train Test Train Test Train Test Train Test Train Test

Category
Pittsburgh 1.031 1.036 1.026 1.048 1.031 1.036 1.031 1.038 1.007 1.029 0.995 1.028

Las Vegas 1.227 1.241 1.229 1.236 1.230 1.232 1.225 1.239 1.227 1.234 1.229 1.231

Review Pittsburgh 1.029 1.041 1.029 1.039 1.031 1.037 1.032 1.037 0.981 1.007 0.974 1.002
Las Vegas 1.231 1.227 1.231 1.226 1.233 1.226 1.230 1.226 1.239 1.224 1.229 1.224

Text
Pittsburgh 1.031 1.038 1.030 1.037 1.032 1.037 1.031 1.037 1.016 1.040 1.032 1.036
Las Vegas 1.233 1.227 1.233 1.226 1.232 1.226 1.232 1.226 1.231 1.225 1.230 1.225

Method SGD ALS
City Train Test Train Test
Pittsburgh 0.839 0.931 0.830 0.950
Las Vegas 0.961 1.106 0.957 1.138

Method Baseline Hybrid
City Train Test Train Test
Pittsburgh 1.109 1.224 0.813 0.911
Las Vegas 1.183 1.291 0.876 0.996

