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MapReduce: Summary
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MapReduce: Examples
• Examples

• Use file:

• Download tip.json from the yelp dataset challenge
• https://www.yelp.com/dataset/challenge
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$ docker run -it --rm -p 8888:8888 jupyter/pyspark-notebook

MapReduce-PySpark-Examples-2.ipynb

https://www.yelp.com/dataset/challenge


Combiners
• Sometimes, a Reduce function is associative and commutative
• Can be combined in any order, with the same result
• Can push some of what Reducers do to Map task

• Reduces network traffic for data sent to Reduce task

• Example: word count
• Instead of producing many pairs (w, 1), (w, 1), … can sum the n occurrences and 

emit (w, n)
• Still required to do aggregation at the Reduce task for key, value pairs coming 

from multiple Map tasks
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Example: Build an Inverted Index
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Input:

tweet1, (“I love pancakes for breakfast”) 
tweet2, (“I dislike pancakes”)
tweet3, (“What should I eat for
breakfast?”) 
tweet4, (“I love to eat”)

Desired output:

“pancakes”, (tweet1, tweet2) 
“breakfast”, (tweet1, tweet3) 
“eat”, (tweet3, tweet4) 
“love”, (tweet1, tweet4)
…

Map task:
For each word, emit (word, tweetID) as intermediate key-value pair
Reduce task: 
Reduce function then just emits key and list of tweetIDs associated with 
that key



MapReduce Environment
• MapReduce environment takes care of:
• Partitioning the input data 
• Scheduling the program’s execution across a 

set of machines
• Performing the group by key step

• In practice this is is the bottleneck
• Handling machine failures
• Managing required inter-machine  

communication
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Data Flow
• Input and final output are stored on a distributed file system (HDFS)
• Scheduler tries to schedule map tasks “close” to physical storage location of 

input data

• Intermediate results are stored on local FS of Map and Reduce workers

• Output is often input to another MapReduce task 
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Coordination: Master
• Master node takes care of coordination
• Task status: (idle, in-progress, completed)  

• Idle tasks get scheduled as workers become available  

• When a map task completes, it sends the master the location and sizes of its 
intermediate files  

• one for each reducer  

• Master pushes this info to reducers  

• Master pings workers periodically to detect failures 
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Dealing with failures
• Map worker failure 
• Map tasks completed or in-progress at worker are reset to idle and rescheduled  
• Reduce workers are notified when task is rescheduled on another worker  

• Reduce worker failure  
• Only in-progress tasks are reset to idle, why?  
• Reduce task is restarted  

• Master failure  
• MapReduce task is aborted and client is notified 
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How many Map and Reduce jobs?
• M map tasks, R reduce tasks  
• Rule of a thumb
• Make M much larger than the number of nodes in the cluster  

• One DFS chunk per map task is common  
• Improves dynamic load balancing and speeds up recovery from worker failures  

• Usually R is smaller than M
• Because output is spread across R files  

• Google example
• Often use 200,000 map tasks, 5000 reduce tasks on 2000 machines 
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Task granularity and pipelining
• Fine granularity tasks: map tasks >> machines 
• Minimizes time for fault recovery  
• Can do pipeline shuffling with map execution  

• Multiple mapper on same machine. One working, the other output/shuffling  
• Better dynamic load balancing 
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Refinements: Backup Tasks
• Problem 
• Slow workers significantly lengthen the job completion time

• Other jobs on the machine  
• Bad disks  
• Weird things  

• Solution  
• Near end of phase, spawn backup copies of tasks  

• Whichever one finishes first “wins”  

• Effect  
• Dramatically shortens job completion time 
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Refinements: Combiners
• Back to our word counting example
• Combiner combines the values of all keys of a single mapper …

• Much less data needs to be copied and shuffled!  
• Works if reduce function is commutative and associative 
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Refinement: Partition function
• Want to control how keys get partitioned 
• Inputs to map tasks are created by contiguous splits of input file  
• Reduce needs to ensure that records with the same intermediate key end up at 

the same worker  

• System uses a default partition function
• hash(key) mod R

• Sometimes useful to override the hash function
• E.g., want to have alphabetical or numeric ranges going to different Reduce tasks 

(sorting)  

• E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same 
output file 
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Problems Suited for MapReduce
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General Characteristics of Good Problems for 
MapReduce

• Data set is truly “big”   
• Terabytes, not tens of gigabytes  

• Hadoop/MapReduce designed for terabyte/petabyte scale computation  

• Most real-world problems process less than 100 Gbytes of input  
• Microsoft, Yahoo: median job under 14 GB  
• Facebook: 90% of jobs under 100 GB 

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013 
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General Characteristics of Good Problems for 
MapReduce
• Don’t need fast response time  

• When submitting jobs, Hadoop latency can be a minute  

• Not well-suited for problems that require faster response time  
• online purchases, transaction processing   

• A good pre-computation engine  
• E.g., pre-compute related items for every item in inventory 

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013 
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General Characteristics of Good Problems for 
MapReduce
• Good for applications that work in batch mode  
• Jobs run without human interaction, intervention  

• Runs over entire data set  
• Takes time to initiate, run; shuffle step can be time-consuming  

• Does not support real time applications well: sensor data, real-time 
advertisements, etc.  

• Does not provide good support for random access to datasets
• Extensions: Hive, Dremel, Shark, Amplab

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013 
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General Characteristics of Good Problems for 
MapReduce
• Best suited for data that can be expressed as key-value pairs without losing 

context, dependencies  
• Graph data harder to process using MapReduce  
• Implicit relationships: edges, sub-trees, child/parent relationships, weights, etc.  

• Graph algorithms may need information about the entire graph for each 
iteration
• Hard to break into independent chunks for Map tasks  

• Alternatives: Google’s Pregel, Apache Giraph

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013 
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General Characteristics of Good Problems for 
MapReduce
Other problems/data *Not* suited for MapReduce  

• Tasks that need results of intermediate steps to compute results of current 
step   
• Interdependencies among tasks  
• Map tasks must be independent  

• Some machine learning algorithms   
• Gradient-based learning, expectation maximization 

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013 
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General Characteristics of Good Problems for 
MapReduce
Summary: Good candidates for MapReduce

• Jobs that have to process huge quantities of data and either summarize or 
transform the contents

• Collected data has elements that can easily be captured with an identifier 
(key) and corresponding value 

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013 
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Useful tools for Data Science
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Python libraries for data science
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https://activewizards.com/blog/top-20-python-libraries-for-data-science-in-2018/



Pandas
• Python library that provides high-level data structures 

and a vast variety of tools for analysis

• Ability to translate rather complex operations with data into one or two 
commands

• Pandas contains many built-in methods
• Grouping
• Filtering
• Combining data
• Missing data
• Time-series
• Hierarchical indexing
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https://pandas.pydata.org



Scikit-learn
• Python module based on NumPy and SciPy
• Provides algorithms for many standard machine learning and data mining 

tasks

• Classification

• Regression

• Clustering

• Dimensionality reduction

• Model selection

• Preprocessing
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http://scikit-learn.org/stable/



Elasticsearch
• Open-source, RESTful, distributed search and analytics engine
• Real-time data and real-time analytics
• Scalable, high-availability, multi-tenant
• Full text search
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https://www.elastic.co/products/elasticsearch

https://grafana.comhttps://www.elastic.co/products/kibana



D3.js
• Data Driven Documents
• JavaScript library for 

manipulating documents 
based on data
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https://d3js.org


