

# Introduction to MapReduce (cont.)

Rafael Ferreira da Silva rafsilva@isi.edu

http://rafaelsilva.com



THE PROBLEM WITH AVERAGING STAR RATINGS



## MapReduce: Summary





### MapReduce: Examples

• Examples

\$ docker run -it --rm -p 8888:8888 jupyter/pyspark-notebook

• Use file:

MapReduce-PySpark-Examples-2.ipynb

- Download tip.json from the yelp dataset challenge
  - https://www.yelp.com/dataset/challenge



### Combiners

- Sometimes, a Reduce function is associative and commutative
  - Can be combined in any order, with the same result
  - Can push some of what Reducers do to Map task
- Reduces network traffic for data sent to Reduce task
- Example: word count
  - Instead of producing many pairs (w, 1), (w, 1), ... can sum the n occurrences and emit (w, n)
  - Still required to do aggregation at the Reduce task for key, value pairs coming from multiple Map tasks



# Example: Build an Inverted Index

#### Input:

tweet1, ("I love pancakes for breakfast")

tweet2, ("I dislike pancakes")

tweet3, ("What should I eat for

breakfast?")

tweet4, ("I love to eat")

#### **Desired output:**

. . .

"pancakes", (tweet1, tweet2)
"breakfast", (tweet1, tweet3)
"eat", (tweet3, tweet4)
"love", (tweet1, tweet4)

Map task: For each word, emit (word, tweetID) as intermediate key-value pair Reduce task: Reduce function then just emits key and list of tweetIDs associated with that key



# MapReduce Environment

- MapReduce environment takes care of:
  - Partitioning the input data
  - Scheduling the program's execution across a set of machines
  - Performing the group by key step
    - In practice this is is the bottleneck
  - Handling machine **failures**
  - Managing required inter-machine **communication**





### Data Flow

- Input and final output are stored on a distributed file system (HDFS)
  - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often **input** to another MapReduce task



### **Coordination: Master**

- Master node takes care of coordination
  - Task status: (idle, in-progress, completed)
  - Idle tasks get scheduled as workers become available
  - When a map task completes, it sends the master the location and sizes of its intermediate files
    - one for each reducer
  - Master pushes this info to reducers
- Master pings workers periodically to **detect failures**



# Dealing with failures

- Map worker failure
  - Map tasks completed or in-progress at worker are <u>reset to idle and rescheduled</u>
  - Reduce workers are notified when task is rescheduled on another worker

#### Reduce worker failure

- Only in-progress tasks are reset to idle, why?
- Reduce task is restarted
- Master failure
  - MapReduce task is aborted and client is notified



# How many Map and Reduce jobs?

- **M** map tasks, **R** reduce tasks
- Rule of a thumb
  - Make *M* <u>much larger</u> than the number of nodes in the cluster
    - One DFS chunk per map task is common
  - Improves dynamic load balancing and speeds up recovery from worker failures

#### • Usually *R* is smaller than *M*

• Because output is spread across **R** files

#### • Google example

• Often use 200,000 map tasks, 5000 reduce tasks on 2000 machines



# Task granularity and pipelining

- Fine granularity tasks: map tasks >> machines
  - Minimizes time for fault recovery
  - Can do pipeline shuffling with map execution
    - Multiple mapper on same machine. One working, the other output/shuffling
  - Better dynamic load balancing





Figure 2.3: Overview of the execution of a MapReduce program

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018)

**USC**Viterbi

School of Engineering Information Sciences Institute

# Refinements: Backup Tasks

#### Problem

- Slow workers significantly lengthen the job completion time
  - Other jobs on the machine
  - Bad disks
  - Weird things

#### Solution

- Near end of phase, spawn backup copies of tasks
  - Whichever one finishes first "wins"

#### • Effect

• Dramatically shortens job completion time



# **Refinements: Combiners**

- Back to our word counting example
  - Combiner combines the values of all keys of a single mapper ...



- Much less data needs to be copied and shuffled!
- Works if reduce function is **commutative and associative**



# **Refinement: Partition function**

- Want to control how keys get partitioned
  - Inputs to map tasks are created by contiguous splits of input file
  - Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function
  - hash(key) mod R
- Sometimes useful to override the hash function
  - E.g., want to have alphabetical or numeric ranges going to different Reduce tasks (sorting)
  - E.g., hash(hostname(URL)) mod *R* ensures URLs from a host end up in the same output file



### **Problems Suited for MapReduce**



USC INF 553 – Foundations and Applications of Data Mining (Fall 2018)

- Data set is truly "big"
  - Terabytes, not tens of gigabytes
  - Hadoop/MapReduce designed for terabyte/petabyte scale computation
  - Most real-world problems process less than 100 Gbytes of input
    - Microsoft, Yahoo: median job under 14 GB
    - Facebook: 90% of jobs under 100 GB



- Don't need **fast response time**
- When submitting jobs, Hadoop latency can be a minute
- Not well-suited for problems that require **faster response time** 
  - online purchases, transaction processing
- A good pre-computation engine
  - E.g., pre-compute related items for every item in inventory



- Good for applications that work in **batch mode**
- Jobs run without human interaction, intervention
- Runs over entire data set
  - Takes time to initiate, run; shuffle step can be time-consuming
- Does not support real time applications well: sensor data, real-time advertisements, etc.
- Does not provide good support for random access to datasets
  - Extensions: Hive, Dremel, Shark, Amplab



- Best suited for data that can be expressed as key-value pairs without losing context, dependencies
- Graph data harder to process using MapReduce
  - Implicit relationships: edges, sub-trees, child/parent relationships, weights, etc.
- Graph algorithms may need information about the entire graph for each iteration
  - Hard to break into independent chunks for Map tasks
- Alternatives: Google's Pregel, Apache Giraph



Other problems/data \*Not\* suited for MapReduce

- Tasks that need results of intermediate steps to compute results of current step
  - Interdependencies among tasks
  - Map tasks must be independent
- Some machine learning algorithms
  - Gradient-based learning, expectation maximization



#### Summary: Good candidates for MapReduce

- Jobs that have to process huge quantities of data and either summarize or transform the contents
- Collected data has elements that can easily be captured with an <u>identifier</u> (key) and corresponding value



### Useful tools for Data Science



USC INF 553 – Foundations and Applications of Data Mining (Fall 2018)

# Python libraries for data science





| Library Name                                 | Туре                         |
|----------------------------------------------|------------------------------|
| K Keras                                      | Deep learning                |
| dist-keras<br>elephas<br>spark-deep-learning | Distributed<br>deep learning |
| Natural<br>Language<br>ToolKit               | NLP                          |
| spaCy                                        | NLP                          |
| gensim                                       | NLP                          |
| Scrapy                                       | Data scraping                |

https://activewizards.com/blog/top-20-python-libraries-for-data-science-in-2018/



### Pandas



https://pandas.pydata.org

- Python library that provides high-level data structures and a vast variety of tools for analysis
- Ability to translate rather complex operations with data into one or two commands
- Pandas contains many built-in methods
  - Grouping
  - Filtering
  - Combining data
  - Missing data
  - Time-series
  - Hierarchical indexing

# Scikit-learn



- Python module based on NumPy and SciPy
- Provides algorithms for many standard machine learning and data mining tasks
  - Classification
  - Regression
  - Clustering
  - Dimensionality reduction
  - Model selection
  - Preprocessing



### Elasticsearch



https://www.elastic.co/products/elasticsearch

- Open-source, RESTful, distributed search and analytics engine
  - **Real-time** data and real-time analytics
  - Scalable, high-availability, multi-tenant
  - Full text search



https://www.elastic.co/products/kibana



https://grafana.com



# D3.js

- Data Driven Documents lacksquare
  - JavaScript library for manipulating documents based on data





USC INF 553 – Foundations and Applications of Data Mining (Fall 2018)