
rafsilva@isi.edu
http://rafaelsilva.com

Rafael Ferreira da Silva

Introduction to MapReduce
(cont.)

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 2

MapReduce: Summary

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 3

MapReduce: Examples
• Examples

• Use file:

• Download tip.json from the yelp dataset challenge
• https://www.yelp.com/dataset/challenge

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 4

$ docker run -it --rm -p 8888:8888 jupyter/pyspark-notebook

MapReduce-PySpark-Examples-2.ipynb

https://www.yelp.com/dataset/challenge

Combiners
• Sometimes, a Reduce function is associative and commutative
• Can be combined in any order, with the same result
• Can push some of what Reducers do to Map task

• Reduces network traffic for data sent to Reduce task

• Example: word count
• Instead of producing many pairs (w, 1), (w, 1), … can sum the n occurrences and

emit (w, n)
• Still required to do aggregation at the Reduce task for key, value pairs coming

from multiple Map tasks

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 5

Example: Build an Inverted Index

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 6

Input:

tweet1, (“I love pancakes for breakfast”)
tweet2, (“I dislike pancakes”)
tweet3, (“What should I eat for
breakfast?”)
tweet4, (“I love to eat”)

Desired output:

“pancakes”, (tweet1, tweet2)
“breakfast”, (tweet1, tweet3)
“eat”, (tweet3, tweet4)
“love”, (tweet1, tweet4)
…

Map task:
For each word, emit (word, tweetID) as intermediate key-value pair
Reduce task:
Reduce function then just emits key and list of tweetIDs associated with
that key

MapReduce Environment
• MapReduce environment takes care of:
• Partitioning the input data
• Scheduling the program’s execution across a

set of machines
• Performing the group by key step

• In practice this is is the bottleneck
• Handling machine failures
• Managing required inter-machine

communication

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 7

Data Flow
• Input and final output are stored on a distributed file system (HDFS)
• Scheduler tries to schedule map tasks “close” to physical storage location of

input data

• Intermediate results are stored on local FS of Map and Reduce workers

• Output is often input to another MapReduce task

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 8

Coordination: Master
• Master node takes care of coordination
• Task status: (idle, in-progress, completed)

• Idle tasks get scheduled as workers become available

• When a map task completes, it sends the master the location and sizes of its
intermediate files

• one for each reducer

• Master pushes this info to reducers

• Master pings workers periodically to detect failures

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 9

Dealing with failures
• Map worker failure
• Map tasks completed or in-progress at worker are reset to idle and rescheduled
• Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure
• Only in-progress tasks are reset to idle, why?
• Reduce task is restarted

• Master failure
• MapReduce task is aborted and client is notified

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 10

How many Map and Reduce jobs?
• M map tasks, R reduce tasks
• Rule of a thumb
• Make M much larger than the number of nodes in the cluster

• One DFS chunk per map task is common
• Improves dynamic load balancing and speeds up recovery from worker failures

• Usually R is smaller than M
• Because output is spread across R files

• Google example
• Often use 200,000 map tasks, 5000 reduce tasks on 2000 machines

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 11

Task granularity and pipelining
• Fine granularity tasks: map tasks >> machines
• Minimizes time for fault recovery
• Can do pipeline shuffling with map execution

• Multiple mapper on same machine. One working, the other output/shuffling
• Better dynamic load balancing

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 12

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 13

Refinements: Backup Tasks
• Problem
• Slow workers significantly lengthen the job completion time

• Other jobs on the machine
• Bad disks
• Weird things

• Solution
• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
• Dramatically shortens job completion time

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 14

Refinements: Combiners
• Back to our word counting example
• Combiner combines the values of all keys of a single mapper …

• Much less data needs to be copied and shuffled!
• Works if reduce function is commutative and associative

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 15

Refinement: Partition function
• Want to control how keys get partitioned
• Inputs to map tasks are created by contiguous splits of input file
• Reduce needs to ensure that records with the same intermediate key end up at

the same worker

• System uses a default partition function
• hash(key) mod R

• Sometimes useful to override the hash function
• E.g., want to have alphabetical or numeric ranges going to different Reduce tasks

(sorting)

• E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same
output file

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 16

Problems Suited for MapReduce

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 17

General Characteristics of Good Problems for
MapReduce

• Data set is truly “big”
• Terabytes, not tens of gigabytes

• Hadoop/MapReduce designed for terabyte/petabyte scale computation

• Most real-world problems process less than 100 Gbytes of input
• Microsoft, Yahoo: median job under 14 GB
• Facebook: 90% of jobs under 100 GB

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 18

General Characteristics of Good Problems for
MapReduce
• Don’t need fast response time

• When submitting jobs, Hadoop latency can be a minute

• Not well-suited for problems that require faster response time
• online purchases, transaction processing

• A good pre-computation engine
• E.g., pre-compute related items for every item in inventory

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 19

General Characteristics of Good Problems for
MapReduce
• Good for applications that work in batch mode
• Jobs run without human interaction, intervention

• Runs over entire data set
• Takes time to initiate, run; shuffle step can be time-consuming

• Does not support real time applications well: sensor data, real-time
advertisements, etc.

• Does not provide good support for random access to datasets
• Extensions: Hive, Dremel, Shark, Amplab

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 20

General Characteristics of Good Problems for
MapReduce
• Best suited for data that can be expressed as key-value pairs without losing

context, dependencies
• Graph data harder to process using MapReduce
• Implicit relationships: edges, sub-trees, child/parent relationships, weights, etc.

• Graph algorithms may need information about the entire graph for each
iteration
• Hard to break into independent chunks for Map tasks

• Alternatives: Google’s Pregel, Apache Giraph

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 21

General Characteristics of Good Problems for
MapReduce
Other problems/data *Not* suited for MapReduce

• Tasks that need results of intermediate steps to compute results of current
step
• Interdependencies among tasks
• Map tasks must be independent

• Some machine learning algorithms
• Gradient-based learning, expectation maximization

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 22

General Characteristics of Good Problems for
MapReduce
Summary: Good candidates for MapReduce

• Jobs that have to process huge quantities of data and either summarize or
transform the contents

• Collected data has elements that can easily be captured with an identifier
(key) and corresponding value

Source: “To Hadoop or Not to Hadoop” by Anand Krishnaswamy 8/13/2013

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 23

Useful tools for Data Science

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 24

Python libraries for data science

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 25

https://activewizards.com/blog/top-20-python-libraries-for-data-science-in-2018/

Pandas
• Python library that provides high-level data structures

and a vast variety of tools for analysis

• Ability to translate rather complex operations with data into one or two
commands

• Pandas contains many built-in methods
• Grouping
• Filtering
• Combining data
• Missing data
• Time-series
• Hierarchical indexing

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 26

https://pandas.pydata.org

Scikit-learn
• Python module based on NumPy and SciPy
• Provides algorithms for many standard machine learning and data mining

tasks

• Classification

• Regression

• Clustering

• Dimensionality reduction

• Model selection

• Preprocessing

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 27

http://scikit-learn.org/stable/

Elasticsearch
• Open-source, RESTful, distributed search and analytics engine
• Real-time data and real-time analytics
• Scalable, high-availability, multi-tenant
• Full text search

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 28

https://www.elastic.co/products/elasticsearch

https://grafana.comhttps://www.elastic.co/products/kibana

D3.js
• Data Driven Documents
• JavaScript library for

manipulating documents
based on data

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 29

https://d3js.org

