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Clustering: Examples
• Examples

• Use files:
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docker run -p 8888:8888 jupyter/scipy-notebook:2c80cf3537ca

K-Means-clustering-example.ipynb

Hierarchical-clustering-example.ipynb
shopping_data.csv

Clustering-comparison.ipynb
clusterable_data.npy



Roadmap
• Problem, types, and distance functions

• Hierarchical clustering

• Point assignment
• K-means
• BFR: extend k-means to handle large data set
• CURE

• Curse of dimensionality
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Clustering Problem
• Given a set of objects and a distance function

• Find groups/clusters of objects

• Desired properties:
• Objects in the same group are close to each other
• Objects in different groups are far away from each other
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Example
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Clustering can be hard
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Clustering Stars
• Each represented by 7-dimensional point
• Dimension = frequency band
• Point = radiation signature
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Clustering Music CDs
• CD represented by a set of its buyers
• Similar CD’s have similar buyers

• Use LSH in clustering large sets
• Use LSH to efficiently find similar sets
• Compute pairwise similarities of sets 
• Use the similarities in clustering (e.g., hierarchical)

• Advantage: 
• avoid computing similarity of dissimilar sets
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Clustering Documents
• Document D represented as a word vector
• (w1, w2,…, wk), where wi = 1 if it appears in D

• Measure similarity of document D1 and D2
• Cosine(D1, D2)

• Similar documents likely on same topic
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Types of Algorithms
• Hierarchical vs. point assignment
• Hierarchical: Bottom-up iterative merging of clusters to form a multi-level 

clustering
• Point assignment or partitional: one-level 

• Euclidean or non-Euclidean
• Cluster center/centroid makes sense only in Euclidean

• In-memory or not
• In-memory: entire data can fit in main memory
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Varied Distance Functions
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Distance function Type of objects
Euclidean Points in Euclidean space
Cosine Vectors
Jaccard Sets
Edit distance Strings
Hamming distance Bit vectors



Euclidean Distance
• Measures distance of two points in Euclidean space

a

b

c
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Cosine Distance

• Similarity = Cosine of angle btw vectors: A & B
• distance = 1- Cosine(A, B)

a

b

c
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Edit Distance
• For string data, distance btw x and y =
• # of insertions or deletions of characters that turn x into y

• x = abcde, y = acfdeg
• Edit(x, y) = 3
• Delete b
• Insert f after c
• Insert g after e
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Hamming Distance
• For two bit vectors, distance btw x and y =
• # of corresponding bits that differ

• x = 10101, y = 11110
• Hamming(x, y) = 3
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Roadmap

• Problem, types and distance functions

• Hierarchical clustering

• Point assignment
• K-means
• BFR
• CURE

• Curse of dimensionality
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Hierarchical Clustering

When to stop?

How to measure cluster distance?

How to pick and combine efficiently?

• Initially, a point is in a cluster by itself
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Centroid-Based Distance
• Assume Euclidean space

• dist(C1, C2) = distance of their centroids
• Coordinate of centroid = avg of that of all points in the cluster

• C1: {(1, 2), (2, 2)}
• Centroid = (1.5, 2)
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Example

• Which two points are closest? 
• What is their distance?
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First merge, compute centroid
• Which two clusters to be merged next?

21



After two more merges
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After 3 more merges
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Final Result
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• Represented as a tree



Dendrogram

• Can obtain k clusters from result for desired k
• k can be any value between 1 and n
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Complexity of Hierarchical Clustering
• n data points
• At most n – 1 step of merging

• Naive implementation, e.g., storing pairwise cluster distances in a matrix
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C1 C2 C3 C4
C1 0 2 3 2
C2 0 4 5
C3 0 3
C4 0



Complexity of Naive Implementation
• Initially, O(n2) for creating matrix and finding pair with minimum distance

• Subsequent merge, assuming matrix: k x k
• Delete columns for old clusters: O(k)
• Add new column for new cluster C’: O(k)
• Compute dist. of C’ with other clusters: O(k)
• Find new pair of clusters with min. dist: O(k2)

=> Overall complexity: O(n3)
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Improved Version
• Use priority queue (e.g., heap-based) instead of matrix

1. Compute pairwise dist. of all points: O(n2)

2. Build priority queue (time linear to size of queue), so: O(n2)

3. Each merge: 
a) Remove entries for old clusters: 2n* O(log(n))
b) Add entries for new cluster: n * O(log(n))

=> Overall complexity: O(n2 log(n))
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Other Measures of Cluster Distance
• Min/max of distances of any two points, one from each cluster

• Avg distance of all pairs of points, one from each cluster

• Merge two clusters if resulting cluster has
• lowest radius (max dist btw point and centroid)
• lowest diameter (max dist btw. two points)
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Stopping Rules
• Stop if diameter/radius of next cluster > threshold

• Or stop if density of next cluster < threshold
• Density: how many points per unit volume
• Volume: estimated as some power, e.g., 1 or 2, of diameter/radius
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Non-Euclidean Space
• Distance of two points can not be measured by their locations (i.e., no 

concept of coordinates)

• May use Jaccard, Cosine, Edit, Hamming to compute distances as appropriate

• E.g., Cosine can be used on two vectors
• Even when measuring distance of their end points is not meaningful or desired
• E.g., two similar documents, but one is twice as long as the other
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Clusteroid
• Centroid is not meaningful in non-Euclidean

• Clusteroid = a point in the cluster that minimizes:
• Sum of (squared) distances to other points, or
• Maximum distance to another point
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Example
• Consider a cluster of 4 points: 
• abcd, aecdb, abecb, ecdab

• Their edit distances:
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aecdb abecb ecdab
abcd 3 3 5
aecdb 2 2
abecb 4



Determine Clusteroid
• aecdb will be chosen as clusteroid
• Located in “center” judged by all 3 measures 
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aecdb abecb ecdab
abcd 3 3 5

aecdb 2 2
abecb 4

Point Sum Sum-sq Max
abcd 11 43 5

aecdb 7 17 3
abecb 9 29 4
ecdab 11 45 5



Roadmap

• Problem, types, and distance functions

• Hierarchical clustering

• Point assignment
• K-means
• BFR
• CURE

• Curse of dimensionality
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K-means Algorithm
1. Pick k points as centroids of k clusters

2. Repeat until centroids stabilize
a) For each point p,

Find the centroid to which p is closest
Add p to the cluster of that centroid

b)   Re-compute centroids of clusters

36

Point assignment



Complexity

Assume n data points
1. Pick k points as centroids of k clusters
• O(k)

2. Repeat until centroids stabilize O(I*n*k)
a) For each point p, O(n*k)

Find the centroid to which p is closest
Add p to the cluster of that centroid

b)   Re-compute centroids of clusters: O(k*n/k) or O(n)
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I: # of iterations



Important Issues in k-means
• Picking points for initial centroids
• May produce different clusters with diff. choices

• Picking right values for k: # of clusters
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Picking Points for Initial Centroids
• Method 1: Pick points as far away as possible
• First pick one randomly
• Next,  repeatedly pick one x far away from existing ones: distance between x and 

existing points = their minimum distance

• Method 2: produce k clusters by hierarchical methods, and select one point 
from each cluster
• May cluster on a sample of points instead
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Method 1 example
• First point: (6, 8)
• 2nd point: (12, 3)
• 3rd point: (2, 2)
• …
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2. (12,3) is farthest away from (6,8)

1. First point

3. (2, 2) has maximum of
minimum distance to 

(6,8) and (12,3) 



Picking Right Value for k
• Cohesion of clusters increases dramatically
• Before # of clusters is smaller than some k

• More cohesive if avg. diameter of clusters is smaller
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Finding Right k

First, find the elbow of the curve:
• Run k-means for k = 1, 2, 4, 8, … 2m-1 

• i.e., double # of clusters at each clustering/run
• Stop at k = 2v
• where cohesion changes little from k = v
• Elbow: [v/2, v]

Since k = 2m-1 = 2v
Þm = 2 + log2v 
(m: # of clusterings) 

42

2vv
v

v/2



Finding Right k
• Next, binary search on [v/2, v]
• Suppose current range [x, y]
• Midpoint z = (x + y) /2
• If not much change between [z, y]

true k in [x, z]
else 

true k in [z, y]
• Continue search in [x, z] or [z, y]

ÞEvery search/clustering divides range by half
Þ# of clustering = log2 (v/2) = log2v – 1

Overall, about 2log2v clusterings
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Roadmap

• Problem, types, and distance functions

• Hierarchical clustering

• Point assignment
• K-means
• BFR
• CURE

• Curse of dimensionality
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BFR [Bradley-Fayyad-Reina] Algorithm

• Extend k-means to handle large data set
• So large that can not be fit in main memory
• Need to process one chunk at a time
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BFR Algorithm
• Select k points as initial centroids 
• using methods discussed before

• Load one chunk of data into memory at a time

• For each chunk, its points are either:
a) assigned to existing clusters, or
b) used to form new mini-clusters, or
c) retained
Points in case a and b are not retained in main memory
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Case a

• Case a: assigned to an existing cluster
• if point is sufficiently close to the centroid of the cluster

• Update summary of cluster Ci
• N: # of points in Ci
• SUMi: Sum of values of points in each dim
• SUMSQi:Sum of squared values of points in each dim
=> 2d + 1 values, where d = # of dimensions
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Cluster Summary
• Points in cluster: (5, 1), (6, -2), (7, 0)

• N = 3, SUM = [18, -1], SUMSQ = [110, 5]

ÞCentroid = SUM/N = [6, -1/3]

ÞVariance = SUMSQ/N – (SUM/N)2

= [110/3 – 62, 5/3 – (-1/3)2] = [.667, 1.56]

=> Standard deviation = [.816, 1.25] 
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Variance

• !"# $ = & $ − & $ (

= &[$( − 2$&[$] + & $ ()]
= & $( − 2& $ & $ + & $ (

= & $( − & $ (
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Define “Sufficiently Close”

• Assume points in cluster are normally distributed
=> we know prob. of particular distance from mean
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Define “Sufficiently Close”
• ~68% of points: 1 σ away from mean
• ~95% of points: 2 σ away
• ~99% of points: 3 σ away

60



Mahalanobis Distance

• Normalized distance for multi-dimensional data
• How many σ away from centroid
• This assumes no-correlation among diff. dimensions

• Point p: [p1, …, pd]; centroid: [c1, …, cd]
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Normalized distance in i-th dim

Combine dist. in Euclidean space



Define “Sufficiently Close”
• Use Mahalanobis to measure distance

• Pick centroid with smallest distance

• If distance < threshold (e.g., 4), add point to cluster
• Prob. of 4σ away from mean is less than 10-6
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Assumptions
• Axes of cluster align with axes of space
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Case b: form new mini-clusters
• Use
• points not assigned to existing clusters
• points retained from last rounds 

• Can use a hierarchical clustering algorithm with proper stopping condition
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Merge Mini-Clusters
• Merge new and existing mini-clusters
• If variance of merged cluster is small enough 
• Variance can be computed from: N, SUM, SUMSQ

• Note that none of mini-clusters can be merged with existing (non-mini) 
clusters
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Classification of Points
• Discard set (DS)
• Points close enough to an existing cluster

• Compression set (CS)
• Points close to each other to form mini-clusters
• But not close enough to any cluster

• Retained set (RS)
• Isolated points retained for next rounds
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BFR: “Galaxy” Picture
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A cluster.  Its points
are in the DS. The centroid

Compressed sets.
Their points are in
the CS.

Points in
the RS



Limitations of BFR
• Strong assumptions about clusters
• Normally distributed in each dimension
• Axis-parallel: not ok to have ellipses at an angle 
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Roadmap

• Problem, types, and distance functions

• Hierarchical clustering

• Point assignment
• K-means
• BFR
• CURE

• Curse of dimensionality
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CURE (Clustering Using REpresentatives)
• Also handle large-scale data

• Two passes:
1. Pick a sample and cluster it hierarchically 
2. Scan data and assign points to closest cluster

• Distance between point p and cluster C
• Distance of p from the closest representative in C 
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Cluster Representatives

• A small set of points far away from each other
• E.g., 4
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Moving Representatives
• A fixed fraction of distance toward centroid

• E.g., 20%
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Compare CURE with BFR
• Distribution of data
• CURE: do not assume any particular distribution
• BFR: data should be normally distributed

• Representation of cluster
• CURE: a set of representatives
• BFR: centroid 

• Common: both assume data in Euclidean space
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Roadmap

• Problem, types, and distance functions

• Hierarchical clustering

• Point assignment
• K-means
• BFR
• CURE

• Curse of dimensionality
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High Dimension: Euclidean

• Consider a set of data points on a line
• dist(a, b) < dist(a, c)

• Consider increasing the dimension by 1
• dist(a, b) ~ dist(a, c)

a b c

a

b

c
75



High Dimension: Cosine
• Cosine(a, b) > Cosine(a, c)

• Increase d to 3
• Cosine(a, b) ~ Cosine(a, c)

• Higher d
• Angle -> 90o

• Cosine -> 0

a

b

c

c

b

a
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Curse of Dimensionality
• Data points have similar distance btw each other
• Euclidean distance breaks

• Data vectors become orthogonal
• Cosine function breaks
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Subspace Clustering
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