
rafsilva@isi.edu
http://rafaelsilva.com

Rafael Ferreira da Silva

Mining Social Network Graphs
Analysis of Large Graphs:

Community Detection

With slide contributions from
J. Leskovec, Anand Rajaraman, Jeffrey D. Ullman

Note to other teachers and users of these slides: We would be delighted if you found this
our material useful in giving your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. If you make use of a significant portion of these slides in
your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 2

https://xkcd.com/1810/

Social Networks: Examples
• Examples

• Use files:

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 3

docker run -p 8888:8888 jupyter/scipy-notebook:2c80cf3537ca

Social-Networks-Networkx.ipynb
modularity_maximization.zip

Networks & Communities
• We often think of networks being organized into modules, cluster,

communities:

4

Goal: Find Densely Linked Clusters

5

Twitter & Facebook
• Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012] 6

Community Detection (Graph
Basics)
How to find communities?

7

Community Detection
(Algorithms and Methods)
How to find communities?

8We will work with undirected (unweighted) networks

Today:

9

Recall: Methods of Clustering

• Hierarchical:
• Agglomerative (bottom up):

• Initially, each point is a cluster
• Repeatedly combine the two

“nearest” clusters into one
• Used a distance metric

• Divisive (top down):
• Start with one cluster and recursively split it

• Point assignment:
• Maintain a set of clusters
• Points belong to “nearest” cluster
• Used a distance metric

Betweenness Concept
• Edge betweenness: Number of

shortest paths passing over the edge
• Intuition:

10

Edge strengths (call volume)
in a real network

Edge betweenness
in a real network

b=16
b=7.5

Betweenness Concept (Cont’d)
• Find edges in a social network graph that are least likely to be inside a

community
• Betweenness of edge (a, b):
• number of pairs of nodes x and y -> x, y ∈ "
• edge (a,b) lies on the shortest path between x and y

• If there are several shortest paths between x and y, edge (a,b) is credited with
the fraction of those shortest paths that include edge (a,b)
• A high score is bad: suggests that edge (a,b) runs between two different

communities
• a and b are in different communities

11

The Russian Bridge

12

Betweenness Example

13

• Expect that edge (B,D) has highest betweenness
• (B,D) is on every shortest path from {A,B,C} to {D,E,F,G}
• Betweenness of (B,D) = 3x4 = 12
• (D,F) is on every shortest path from {A,B,C,D} to {F}
• Betweenness of (D,F) = 4x1 = 4
• Natural communities: {A,B,C} and {D,E,F,G}

We need to resolve 2
questions
1. How to compute betweenness?
2. How to select the number of clusters?

14

The Girvan-Newman Algorithm

• Want to discover communities using divisive hierarchical
clustering

• Start with one cluster (the social network) and recursively split it

• Will do this based on the notion of edge betweenness:
Number of shortest paths passing through the edge

• Girvan-Newman Algorithm:
• Visits each node X once
• Computes the number of shortest paths from X to each of the other

nodes that go through each of the edges

• Repeat:
• Calculate betweenness of edges

1. Thresholding to remove high betweeness edges, or
2. Remove edges with highest betweenness: between communities

• Connected components are communities
• Gives a hierarchical decomposition of the network

15

[Girvan-Newman ‘02]

Girvan-Newman Algorithm (1)
• Visit each node X once and compute the number of

shortest paths from X to each of the other nodes that go
through each of the edges

• 1) Perform a breadth-first search (BFS) of the graph,
starting at node X
• The level of each node in BFS is length of the shortest path from X

to that node
• So edges that go between nodes on the same level can never be

part of a shortest path from X
• Edges between levels are called DAG edges (DAG = Directed

Acyclic Graph)
• Each DAG edge is part of at least one shortest path from root X

16

17

Girvan-Newman Algorithm (2)
• 2) Label each node by the number of shortest paths

that reach it from the root node
• Example: BFS starting from node E, labels assigned

Girvan-Newman Algorithm (3)

• 3) Calculate for each edge e, the sum over all nodes Y (of
the fraction) of the shortest paths from the root X to Y
that go through edge e
• Compute this sum for nodes and edges, starting from the

bottom of the graph
• Each node other than the root node is given a credit of 1
• Each leaf node in the DAG gets a credit of 1
• Each node that is not a leaf gets credit = 1 + sum of credits

of the DAG edges from that node to level below
• A DAG edge e entering node Z (from the level above) is

given a share of the credit of Z proportional to the fraction
of shortest paths from the root to Z that go through e

18

Girvan-Newman Algorithm (4)

19

• Assign node and edge values starting from bottom

Girvan-Newman Algorithm (5)

Assigning credits:
• A and C are leaves: get credit = 1
• Each of these nodes has only one parent, so their credit=1

is given to edges (B,A) and (B,C)
• At level 2, G is a leaf: gets credit = 1
• B gets credit 1 + credit of DAG edges entering from below

= 1 + 1 +1 = 3
• B has only one parent, so edge (D,B) gets entire credit of

node B = 3
• Node G has 2 parents (D and F): how do we divide credit

of G between the edges?

20

Girvan-Newman Algorithm (6)
• In this case, both D and F have just one shortest

path from E to each of those nodes
• So, give half credit of node G to each of those edges
• Credit = 1/(1 + 1) = 0.5

• In general, how we distribute credit of a node to its edges
depends on number of shortest paths
• Say there were 5 shortest paths to D and only 3 to F
• Then credit of edge (D,G) = 5/8 and credit of edge (F,G) = 3/8

• Node D gets credit = 1 + credits of edges below it =
1 + 3 + 0.5 = 4.5

• Node F gets credit = 1 + 0.5 = 1.5
• D has only one parent, so Edge (E,D) gets credit = 4.5 from D
• Likewise for F: Edge (E,F) gets credit = 1.5 from F

21

Girvan-Newman Algorithm (7):
Completion of Credit Calculation
starting at node E

22

Girvan-Newman Algorithm (8):
Overall Betweenness Calculation

• To complete betweenness calculation, must:
• Repeat this for every node as root
• Sum the contributions on each edge
• Divide by 2 to get true betweenness
• since every shortest path will be counted twice,

once for each of its endpoints

23

Using Betweenness to Find Communities: Clustering

• Betweenness scores for edges of a graph behave something
like a distance metric
• Not a true distance metric

• Could cluster by taking edges in increasing order of
betweenness and adding to graph one at a time
• At each step, connected components of graph form clusters

• Girvan-Newman: Start with the graph and all its edges and
remove edges with highest betweenness
• Continue until graph has broken into suitable number of connected

components
• Divisive hierarchical clustering (top down)

• Start with one cluster (the social network) and recursively split it

24

Using Betweenness to Find Communities (2)

• (B,D) has highest betweenness (12)
• Removing edge would give natural communities

we identified earlier: {A,B,C} and {D,E,F,G}

25

Using Betweenness to Find Communities (3):
Thresholding

• Could continue to remove edges with highest
betweenness

26

Run Girvan-Newman Iteratively for Community
Detection

• Recall: Divisive hierarchical clustering based on the
notion of edge betweenness:

Number of shortest paths passing through the edge
• Girvan-Newman Algorithm:

• Undirected unweighted networks
• Repeat until no edges are left:

• Calculate betweenness of edges
• This time: remove edges with highest betweenness

• Connected components are communities
• Gives a hierarchical decomposition of the network

27

[Girvan-Newman ‘02]

Girvan-Newman: Example

28

Need to re-compute
betweenness at

every step

4933

121

Girvan-Newman: Example

29

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Recall: Twitter & Facebook
• Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012] 30

31
Communities in physics collaborations

Girvan-Newman: Results

Girvan-Newman: Results
• Zachary’s Karate club:

Hierarchical decomposition

32

We need to resolve 2
questions
1. How to compute betweenness?
2. How to select the number of clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,
http://www.mmds.org 33

Network Communities

• Communities: sets of
tightly connected nodes
• Define: Modularity !

• A measure of how well
a network is partitioned
into communities

• Given a partitioning of the
network into groups ÎÎ":
Q = ∑s∈ S [(# edges within group s) –

(expected # edges within group s)]

34

Need a null model!

The null model is a graph which matches one specific graph in some of its structural features, but
which is otherwise taken to be an instance of a random graph. The null model is used as a term of
comparison, to verify whether the graph in question displays some feature, such as community
structure, or not.

Modularity
• Modularity of partitioning S of graph G:

• Q = ∑s∈ S [(# edges within group s) –
(expected # edges within group s)]

• " #, % = '
()∑+∈%∑,∈+∑-∈+ .,- −

0,0-
()

• Modularity values take range [−1,1]
• It is positive if the number of edges within

groups exceeds the expected number
• 0.3-0.7<Q means significant community structure

35

Aij = 1 if i connects j,
0 else

Normalizing cost.: -1<Q<1

Modularity: Number of clusters

• Modularity is useful for selecting the
number of clusters:

36

Q

Spectral Clustering
Another approach to organizing social-network graphs

Partitioning Graphs
• Another approach to organizing social networking graphs
• Problem: partitioning a graph to minimize the number of edges that connect

different components (communities)
• Goal of minimizing the cut size
• If you just joined Facebook with only one friend
• Don’t want to partition the graph with you disconnected from rest of the world
• Want components to be not too unequal in size

38

Graph Partitioning
• Undirected graph

• Bi-partitioning task:
• Divide vertices into two disjoint groups

• Questions:
• How can we define a “good” partition of ?
• How can we efficiently identify such a partition?

39

1

3
2

5

4 6

A B

1

3

2

5

4 6

Graph Partitioning
• What makes a good partition?
• Divide nodes into two sets so that the cut (set of edges that connect nodes in

different sets) is minimized
• Want the two sets to be approximately equal in size
• Maximize the number of within-group

connections
• Minimize the number of between-group connections

40

1

3

2

5

4 6

A B

Example 10.14

• If we minimize cut: best choice is to put H in one set, other
nodes in other set
• But: we reject partitions where one set is too small
• Better is to use cut with (B,D) and (C,G)
• Smallest cut is not necessarily the best cut

41

A B

Graph Cuts
• Express partitioning objectives as a function of the “edge cut” of the

partition
• Cut: Set of edges with only one vertex in a group:

42

cut(A,B) = 2
1

3

2

5

4 6

Graph Cut Criterion
• Criterion: Minimum-cut
• Minimize weight of connections between groups

• Degenerate case:

• Problem:
• Only considers external cluster connections
• Does not consider internal cluster connectivity

43

arg minA,B cut(A,B)

“Optimal cut”
Minimum cut

Graph Cut Criteria
• Criterion: Normalized-cut [Shi-Malik, ’97]
• Connectivity between groups relative to the density of each group

!"#(%): total weight of the edges with at least
one endpoint in %: !"# % = ∑)∈%+)

n Why use this criterion?
n Produces more balanced partitions

• How do we efficiently find a good partition?
• Problem: Computing optimal cut is NP-hard

44

: !"# % = ∑)∈%+)

Example 10.15

45

• Partition nodes of graph into two disjoint sets S and T
• Normalized Cut for S and T is:

Cut (S,T) + Cut(S,T)
Vol(S) Vol(T)

• If we choose S={H} and T={A,B,C,D,E,F,G} then Cut(S,T) = 1
• Vol(S) = 1 (number of edges with at least one end in S)
• Vol(T) = 11: all edges have at least one node in T
• Normalized cut is 1/1 + 1/11 = 1.09

• For cut (B,D) and (C,G): S = {A,B,C,H}, T = {D,E,F,G}, Cut(S,T) = 2
• Vol(S) = 6, Vol(T) = 7, normalized cut: 2/6 + 2/7 = 0.62

Using Matrix Algebra to Find Good Graph Partitions
• Three matrices that describe aspects of a graph:
• Adjacency Matrix
• Degree Matrix
• Laplacian Matrix: difference between degree and adjacency matrix

• Then get a good idea of how to partition graph from eigenvalues and
eigenvectors of its Laplacian matrix

46

Recall: Eigenvalues and Eigenvectors

• The transformation matrix A =
preserves the direction of vectors parallel to
v = (1,−1)T (in purple) and w = (1,1)T (in blue).
The vectors in red are not parallel to either
eigenvector, so, their directions are changed
by the transformation.

47

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://setosa.io/ev/eigenvectors-and-eigenvalues/

Matrix Representations

• Adjacency matrix (A):
• n x n matrix
• A=[aij], aij=1 if edge between node i and j

• Important properties:
• Symmetric matrix
• Eigenvectors are real and orthogonal
• dot_product(Eigenvectors_i, Eigenvectors_j) = 0

48

1

3

2

5

4 6

1 2 3 4 5 6

1 0 1 1 0 1 0
2 1 0 1 0 0 0
3 1 1 0 1 0 0
4 0 0 1 0 1 1
5 1 0 0 1 0 1
6 0 0 0 1 1 0

Matrix Representations
• Degree matrix (D):
• n x n diagonal matrix
• D=[dii], dii = degree of node i

49

1

3

2

5

4 6

1 2 3 4 5 6

1 3 0 0 0 0 0
2 0 2 0 0 0 0
3 0 0 3 0 0 0
4 0 0 0 3 0 0
5 0 0 0 0 3 0
6 0 0 0 0 0 2

Matrix Representations
• Laplacian matrix (L):
• n x n symmetric matrix

• What is trivial eigenpair?
• ! = ($,… , $) then (⋅ ! = * and so + = +$ = * (smallest eigenvalue)

• Important properties of symmetric matrices:
• Eigenvalues are non-negative real numbers
• Eigenvectors are real and orthogonal

50

(= , − .

1

3

2

5

4 6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

Example 10.19

• Graph and its Laplacian matrix

51

Example (cont.)

• Use standard math package to find all eigenvalues and
eigenvectors
• (Have not scaled eigenvectors to length 1, but could)

• Second eigenvector has three positive and three negative
components
• Suggest obvious partitioning of {1,2,3} and {4,5,6}

52

λ2 as optimization problem

• Recall: to find second-smallest eigenvalue for symmetric matrix
(such as Laplacian):

• Second smallest eigenvalue is the minimum of xTLx where x = [x1,x2,…,xn] is
a column vector (n x 1, n=# of nodes) (Rayleigh quotient)

• Sum of xi
2 = 1

• x is orthogonal to the eigenvector associated with smallest eigenvalue

• What is the meaning of min xTL x on G?
• x"L x = ∑&,()*+ ,&(-&-(= ∑&,()*+ .&(− 0&(-&-(
• = ∑& 1&-&2 − ∑ &,(∈4 2-&-(
• = ∑ &,(∈4(-&2 + -(2 − 2-&-() = ∑ 9,: ∈; <9 − <:

=

53

Node 9 has degree >9. So, value <9= needs to be summed up >9 times.
But each edge (9, :) has two endpoints so we need <9= +<:=

for each edge (i, j)

λ2 as optimization problem (cont’d)

• What else do we know about x?
• ! is unit vector: ∑# !#$ = &
• ! is orthogonal to 1st eigenvector (&, … , &) thus:
∑# !# ⋅ & = ∑# !# = ,

• Remember:

54

å
å -

= Î
2

2
),(

2
)(

min
ii

jiEji

x
xx

l
All labelings
of nodes - so
that ∑./ = 0

We want to assign values !# to nodes i such
that few edges cross 0.

(we want xi and xj to subtract each other)

i j

./ 0
x

.1
Balance to minimize

Ncut as an optimization problem

55

Recall: Example

• Use standard math package to find all eigenvalues and
eigenvectors
• (Have not scaled eigenvectors to length 1, but could)

• Second eigenvector has three positive and three negative
components
• Suggest obvious partitioning of {1,2,3} and {4,5,6}

56

So far…
• How to define a “good” partition of a graph?
• Minimize a given graph cut criterion

• How to efficiently identify such a partition?
• Approximate using information provided by the eigenvalues and eigenvectors

of a graph

• Spectral Clustering
• Naïve approache:

• Split at 0

57

Spectral Clustering Algorithms
• Three basic stages:
• 1) Pre-processing

• Construct a matrix representation of the graph
• 2) Decomposition

• Compute eigenvalues and eigenvectors of the matrix
• Map each point to a lower-dimensional representation based on one or more

eigenvectors
• 3) Grouping

• Assign points to two or more clusters, based on the new representation

58

Spectral Partitioning Algorithm

• 1) Pre-processing:
• Build Laplacian

matrix L of the
graph

• 2) Decomposition:
• Find eigenvalues l

and eigenvectors x
of the matrix L

• Map vertices to
corresponding
components of l2

59

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

l= X =

How do we now
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

Spectral Partitioning

• 3) Grouping:
• Sort components of reduced 1-dimensional vector
• Identify clusters by splitting the sorted vector in two

• How to choose a splitting point?
• Naïve approaches:

• Split at 0 or median value
• More expensive approaches:

• Attempt to minimize normalized cut in 1-dimension
(sweep over ordering of nodes induced by the eigenvector)

60-0.66

-0.35

-0.34

0.33

0.62

0.31
Split at 0:

Cluster A: Positive points
Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B

Example: Spectral Partitioning

61

Rank in x2

Va
lu

e
of

 x
2

Example: Spectral Partitioning

62

Rank in x2

Va
lu

e
of

 x
2

Components of x2

Example: Spectral partitioning

63

Components of x1

Components of x3

k-Way Spectral Clustering
• How do we partition a graph into k clusters?

• Two basic approaches:
• Recursive bi-partitioning [Hagen et al., ’92]

• Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
• Disadvantages: Inefficient, unstable

• Cluster multiple eigenvectors [Shi-Malik, ’00]
• Build a reduced space from multiple eigenvectors
• Commonly used in recent papers
• Multiple eigenvectors prevent instability due to information loss
• A preferable approach…

64

