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Social Networks: Examples
• Examples

• Use files:

USC INF 553 – Foundations and Applications of Data Mining (Fall 2018) 3

docker run -p 8888:8888 jupyter/scipy-notebook:2c80cf3537ca

Social-Networks-Networkx.ipynb
modularity_maximization.zip



Networks & Communities
• We often think of networks being organized into modules, cluster, 

communities:
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Goal: Find Densely Linked Clusters
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Twitter & Facebook
• Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012] 6



Community Detection (Graph 
Basics)
How to find communities?
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Community Detection 
(Algorithms and Methods)
How to find communities?

8We will work with undirected (unweighted) networks



Today:

9

Recall: Methods of Clustering

• Hierarchical:
• Agglomerative (bottom up):

• Initially, each point is a cluster
• Repeatedly combine the two 

“nearest” clusters into one
• Used a distance metric

• Divisive (top down):
• Start with one cluster and recursively split it

• Point assignment:
• Maintain a set of clusters
• Points belong to “nearest” cluster
• Used a distance metric



Betweenness Concept
• Edge betweenness: Number of 

shortest paths passing over the edge
• Intuition:
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Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



Betweenness Concept (Cont’d)
• Find edges in a social network graph that are least likely to be inside a 

community
• Betweenness of edge (a, b): 
• number of pairs of nodes x and y -> x, y ∈ "
• edge (a,b) lies on the shortest path between x and y

• If there are several shortest paths between x and y, edge (a,b) is credited with 
the fraction of those shortest paths that include edge (a,b)
• A high score is bad: suggests that edge (a,b) runs between two different 

communities
• a and b are in different communities
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The Russian Bridge
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Betweenness Example
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• Expect that edge (B,D) has highest betweenness
• (B,D) is on every shortest path from {A,B,C} to {D,E,F,G}
• Betweenness of (B,D) = 3x4 = 12
• (D,F) is on every shortest path from {A,B,C,D} to {F}
• Betweenness of (D,F) = 4x1 = 4
• Natural communities: {A,B,C} and {D,E,F,G}



We need to resolve 2 
questions
1. How to compute betweenness?
2. How to select the number of clusters?

14



The Girvan-Newman Algorithm

• Want to discover communities using divisive hierarchical 
clustering 

• Start with one cluster (the social network) and recursively split it

• Will do this based on the notion of edge betweenness:
Number of shortest paths passing through the edge

• Girvan-Newman Algorithm:
• Visits each node X once
• Computes the number of shortest paths from X to each of the other 

nodes that go through each of the edges

• Repeat:
• Calculate betweenness of edges

1. Thresholding to remove high betweeness edges, or
2. Remove edges with highest betweenness: between communities

• Connected components are communities
• Gives a hierarchical decomposition of the network

15

[Girvan-Newman ‘02]



Girvan-Newman Algorithm (1)
• Visit each node X once and compute the number of 

shortest paths from X to each of the other nodes that go 
through each of the edges

• 1) Perform a breadth-first search (BFS) of the graph, 
starting at node X
• The level of each node in BFS is length of the shortest path from X 

to that node
• So edges that go between nodes on the same level can never be 

part of a shortest path from X
• Edges between levels are called DAG edges (DAG = Directed 

Acyclic Graph)
• Each DAG edge is part of at least one shortest path from root X
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Girvan-Newman Algorithm (2)
• 2) Label each node by the number of shortest paths 

that reach it from the root node
• Example: BFS starting from node E, labels assigned



Girvan-Newman Algorithm (3)

• 3) Calculate for each edge e, the sum over all nodes Y (of 
the fraction) of the shortest paths from the root X to Y 
that go through edge e
• Compute this sum for nodes and edges, starting from the 

bottom of the graph
• Each node other than the root node is given a credit of 1
• Each leaf node in the DAG gets a credit of 1
• Each node that is not a leaf gets credit = 1 + sum of credits 

of the DAG edges from that node to level below
• A DAG edge e entering node Z (from the level above) is 

given a share of the credit of Z proportional to the fraction 
of shortest paths from the root to Z that go through e
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Girvan-Newman Algorithm (4)
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• Assign node and edge values starting from bottom



Girvan-Newman Algorithm (5)

Assigning credits:
• A and C are leaves: get credit = 1
• Each of these nodes has only one parent, so their credit=1 

is given to edges (B,A) and (B,C)
• At level 2, G is a leaf: gets credit = 1
• B gets credit 1 + credit of DAG edges entering from below 

= 1 + 1 +1 = 3
• B has only one parent, so edge (D,B) gets entire credit of 

node B = 3
• Node G has 2 parents (D and F): how do we divide credit 

of G between the edges?
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Girvan-Newman Algorithm (6)
• In this case, both D and F have just one shortest 

path from E to each of those nodes
• So, give half credit of node G to each of those edges
• Credit = 1/(1 + 1) = 0.5

• In general, how we distribute credit of a node to its edges 
depends on number of shortest paths
• Say there were 5 shortest paths to D and only 3 to F
• Then credit of edge (D,G) = 5/8 and credit of edge (F,G) = 3/8

• Node D gets credit = 1 + credits of edges below it = 
1 + 3 + 0.5 = 4.5

• Node F gets credit = 1 + 0.5 = 1.5
• D has only one parent, so Edge (E,D) gets credit = 4.5 from D
• Likewise for F: Edge (E,F) gets credit = 1.5 from F
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Girvan-Newman Algorithm (7): 
Completion of Credit Calculation 
starting at node E
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Girvan-Newman Algorithm (8): 
Overall Betweenness Calculation

• To complete betweenness calculation, must: 
• Repeat this for every node as root
• Sum the contributions on each edge
• Divide by 2 to get true betweenness
• since every shortest path will be counted twice, 

once for each of its endpoints

23



Using Betweenness to Find Communities: Clustering

• Betweenness scores for edges of a graph behave something 
like a distance metric
• Not a true distance metric

• Could cluster by taking edges in increasing order of 
betweenness and adding to graph one at a time
• At each step, connected components of graph form clusters

• Girvan-Newman: Start with the graph and all its edges and 
remove edges with highest betweenness
• Continue until graph has broken into suitable number of connected 

components
• Divisive hierarchical clustering (top down)

• Start with one cluster (the social network) and recursively split it

24



Using Betweenness to Find Communities (2)

• (B,D) has highest betweenness (12)
• Removing edge would give natural communities 

we identified earlier: {A,B,C} and {D,E,F,G}
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Using Betweenness to Find Communities (3): 
Thresholding

• Could continue to remove edges with highest 
betweenness
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Run Girvan-Newman Iteratively for Community 
Detection

• Recall: Divisive hierarchical clustering based on the 
notion of edge betweenness:

Number of shortest paths passing through the edge
• Girvan-Newman Algorithm:

• Undirected unweighted networks
• Repeat until no edges are left:

• Calculate betweenness of edges
• This time: remove edges with highest betweenness

• Connected components are communities
• Gives a hierarchical decomposition of the network

27

[Girvan-Newman ‘02]



Girvan-Newman: Example
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Need to re-compute 
betweenness at 

every step

4933

121



Girvan-Newman: Example
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:



Recall: Twitter & Facebook
• Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012] 30



31
Communities in physics collaborations 

Girvan-Newman: Results



Girvan-Newman: Results
• Zachary’s Karate club: 

Hierarchical decomposition
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We need to resolve 2 
questions
1. How to compute betweenness?
2. How to select the number of clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 
http://www.mmds.org 33



Network Communities

• Communities: sets of 
tightly connected nodes
• Define: Modularity !

• A measure of how well 
a network is partitioned 
into communities

• Given a partitioning of the 
network into groups ÎÎ":
Q = ∑s∈ S [ (# edges within group s) –

(expected # edges within group s) ]

34

Need a null model!

The null model is a graph which matches one specific graph in some of its structural features, but 
which is otherwise taken to be an instance of a random graph. The null model is used as a term of 
comparison, to verify whether the graph in question displays some feature, such as community 
structure, or not.



Modularity
• Modularity of partitioning S of graph G:

• Q = ∑s∈ S [ (# edges within group s) –
(expected # edges within group s) ]

• " #, % = '
()∑+∈%∑,∈+∑-∈+ .,- −

0,0-
()

• Modularity values take range [−1,1]
• It is positive if the number of edges within 

groups exceeds the expected number
• 0.3-0.7<Q means significant community structure

35

Aij = 1 if i connects j, 
0 else

Normalizing cost.: -1<Q<1



Modularity: Number of clusters

• Modularity is useful for selecting the 
number of clusters:

36
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Spectral Clustering
Another approach to organizing social-network graphs



Partitioning Graphs
• Another approach to organizing social networking graphs
• Problem: partitioning a graph to minimize the number of edges that connect 

different components (communities)
• Goal of minimizing the cut size
• If you just joined Facebook with only one friend
• Don’t want to partition the graph with you disconnected from rest of the world
• Want components to be not too unequal in size

38



Graph Partitioning
• Undirected graph 

• Bi-partitioning task:
• Divide vertices into two disjoint groups 

• Questions:
• How can we define a “good” partition of ?
• How can we efficiently identify such a partition?

39
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Graph Partitioning
• What makes a good partition?
• Divide nodes into two sets so that the cut (set of edges that connect nodes in 

different sets) is minimized
• Want the two sets to be approximately equal in size
• Maximize the number of within-group 

connections
• Minimize the number of between-group connections

40
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Example 10.14

• If we minimize cut: best choice is to put H in one set, other 
nodes in other set
• But: we reject partitions where one set is too small
• Better is to use cut with (B,D) and (C,G)
• Smallest cut is not necessarily the best cut

41



A B

Graph Cuts
• Express partitioning objectives as a function of the “edge cut” of the 

partition
• Cut: Set of edges with only one vertex in a group:

42

cut(A,B) = 2
1

3

2

5

4 6



Graph Cut Criterion
• Criterion: Minimum-cut
• Minimize weight of connections between groups

• Degenerate case:

• Problem:
• Only considers external cluster connections
• Does not consider internal cluster connectivity

43

arg minA,B cut(A,B)

“Optimal cut”
Minimum cut



Graph Cut Criteria
• Criterion: Normalized-cut [Shi-Malik, ’97]
• Connectivity between groups relative to the density of each group

!"#(%): total weight of the edges with at least 
one endpoint in %: !"# % = ∑)∈%+)

n Why use this criterion?
n Produces more balanced partitions

• How do we efficiently find a good partition?
• Problem: Computing optimal cut is NP-hard

44

: !"# % = ∑)∈%+)



Example 10.15
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• Partition nodes of graph into two disjoint sets S and T
• Normalized Cut for S and T is: 

Cut (S,T) +  Cut(S,T)
Vol(S) Vol(T)

• If we choose S={H} and T={A,B,C,D,E,F,G} then Cut(S,T) = 1
• Vol(S) = 1     (number of edges with at least one end in S)
• Vol(T) = 11:  all edges have at least one node in T
• Normalized cut is 1/1 + 1/11 = 1.09

• For cut (B,D) and (C,G): S = {A,B,C,H}, T = {D,E,F,G}, Cut(S,T) = 2
• Vol(S) = 6, Vol(T) = 7, normalized cut: 2/6 + 2/7 = 0.62



Using Matrix Algebra to Find Good Graph Partitions
• Three matrices that describe aspects of a graph:
• Adjacency Matrix
• Degree Matrix
• Laplacian Matrix: difference between degree and adjacency matrix

• Then get a good idea of how to partition graph from eigenvalues and 
eigenvectors of its Laplacian matrix

46



Recall: Eigenvalues and Eigenvectors

• The transformation matrix A =              
preserves the direction of vectors parallel to 
v = (1,−1)T (in purple) and w = (1,1)T (in blue). 
The vectors in red are not parallel to either 
eigenvector, so, their directions are changed 
by the transformation.

47

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://setosa.io/ev/eigenvectors-and-eigenvalues/



Matrix Representations

• Adjacency matrix (A):
• n x n matrix
• A=[aij], aij=1 if edge between node i and j

• Important properties: 
• Symmetric matrix
• Eigenvectors are real and orthogonal 
• dot_product(Eigenvectors_i, Eigenvectors_j) = 0

48
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1 2 3 4 5 6

1 0 1 1 0 1 0
2 1 0 1 0 0 0
3 1 1 0 1 0 0
4 0 0 1 0 1 1
5 1 0 0 1 0 1
6 0 0 0 1 1 0



Matrix Representations
• Degree matrix (D):
• n x n diagonal matrix
• D=[dii], dii = degree of node i
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1 2 3 4 5 6

1 3 0 0 0 0 0
2 0 2 0 0 0 0
3 0 0 3 0 0 0
4 0 0 0 3 0 0
5 0 0 0 0 3 0
6 0 0 0 0 0 2



Matrix Representations
• Laplacian matrix (L):
• n x n symmetric matrix

• What is trivial eigenpair?
• ! = ($,… , $) then ( ⋅ ! = * and so + = +$ = * (smallest eigenvalue)

• Important properties of symmetric matrices:
• Eigenvalues are non-negative real numbers
• Eigenvectors are real and orthogonal
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( = , − .

1

3

2
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4 6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



Example 10.19

• Graph and its Laplacian matrix

51



Example (cont.)

• Use standard math package to find all eigenvalues and 
eigenvectors
• (Have not scaled eigenvectors to length 1, but could)

• Second eigenvector has three positive and three negative 
components 
• Suggest obvious partitioning of {1,2,3} and {4,5,6}
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λ2 as optimization problem

• Recall: to find second-smallest eigenvalue for symmetric matrix 
(such as Laplacian): 

• Second smallest eigenvalue is the minimum of xTLx where x = [x1,x2,…,xn] is 
a column vector (n x 1, n=# of nodes) (Rayleigh quotient)

• Sum of xi
2 = 1

• x is orthogonal to the eigenvector associated with smallest eigenvalue

• What is the meaning of min xTL x on G?
• x"L x = ∑&,()*+ ,&( -&-( = ∑&,()*+ .&( − 0&( -&-(
• = ∑& 1&-&2 − ∑ &,( ∈4 2-&-(
• = ∑ &,( ∈4(-&2 + -(2 − 2-&-() = ∑ 9,: ∈; <9 − <:

=

53

Node 9 has degree >9. So, value <9= needs to be summed up >9 times.
But each edge (9, :) has two endpoints so we need <9= +<:=

for each edge (i, j)



λ2 as optimization problem (cont’d)

• What else do we know about x?
• ! is unit vector: ∑# !#$ = &
• ! is orthogonal to 1st eigenvector (&, … , &) thus: 
∑# !# ⋅ & = ∑# !# = ,

• Remember:
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Ncut as an optimization problem

55



Recall: Example

• Use standard math package to find all eigenvalues and 
eigenvectors
• (Have not scaled eigenvectors to length 1, but could)

• Second eigenvector has three positive and three negative 
components 
• Suggest obvious partitioning of {1,2,3} and {4,5,6}
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So far…
• How to define a “good” partition of a graph?
• Minimize a given graph cut criterion

• How to efficiently identify such a partition?
• Approximate using information provided by the eigenvalues and eigenvectors 

of a graph

• Spectral Clustering
• Naïve approache: 

• Split at 0
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Spectral Clustering Algorithms
• Three basic stages:
• 1) Pre-processing

• Construct a matrix representation of the graph
• 2) Decomposition

• Compute eigenvalues and eigenvectors of the matrix
• Map each point to a lower-dimensional representation based on one or more 

eigenvectors
• 3) Grouping

• Assign points to two or more clusters, based on the new representation
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Spectral Partitioning Algorithm

• 1) Pre-processing:
• Build Laplacian

matrix L of the 
graph

• 2) Decomposition:
• Find eigenvalues l

and eigenvectors x
of the matrix L

• Map vertices to 
corresponding 
components of l2
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How do we now 
find the clusters?
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1 2 3 4 5 6

1 3 -1 -1 0 -1 0
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3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



Spectral Partitioning

• 3) Grouping:
• Sort components of reduced 1-dimensional vector
• Identify clusters by splitting the sorted vector in two

• How to choose a splitting point?
• Naïve approaches: 

• Split at 0 or median value
• More expensive approaches:

• Attempt to minimize normalized cut in 1-dimension 
(sweep over ordering of nodes induced by the eigenvector)

60-0.66

-0.35

-0.34

0.33

0.62

0.31
Split at 0:

Cluster A: Positive points
Cluster B: Negative points

0.33
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-0.35
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A B



Example: Spectral Partitioning
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Example: Spectral Partitioning
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Example: Spectral partitioning
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Components of x1

Components of x3



k-Way Spectral Clustering
• How do we partition a graph into k clusters?

• Two basic approaches:
• Recursive bi-partitioning [Hagen et al., ’92]

• Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
• Disadvantages: Inefficient, unstable

• Cluster multiple eigenvectors [Shi-Malik, ’00]
• Build a reduced space from multiple eigenvectors
• Commonly used in recent papers
• Multiple eigenvectors prevent instability due to information loss
• A preferable approach…
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